Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Environ Microbiol ; 88(1): e0166121, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669423

RESUMO

Horizontal gene transfer was long thought to be marginal in Mollicutes, but the capacity of some of these wall-less bacteria to exchange large chromosomal regions has been recently documented. Mycoplasma chromosomal transfer (MCT) is an unconventional mechanism that relies on the presence of a functional integrative conjugative element (ICE) in at least one partner and involves the horizontal acquisition of small and large chromosomal fragments from any part of the donor genome, which results in progenies composed of an infinite variety of mosaic genomes. The present study focuses on Mycoplasma bovis, an important pathogen of cattle responsible for major economic losses worldwide. By combining phylogenetic tree reconstructions and detailed comparative genome analyses of 36 isolates collected in Spain (2016 to 2018), we confirmed the mosaic nature of 16 field isolates and mapped chromosomal transfers exchanged between their hypothetical ancestors. This study provides evidence that MCT can take place in the field, most likely during coinfections by multiple strains. Because mobile genetic elements (MGEs) are classical contributors of genome plasticity, the presence of phages, insertion sequences (ISs), and ICEs was also investigated. Data revealed that these elements are widespread within the M. bovis species and evidenced classical horizontal transfer of phages and ICEs in addition to MCT. These events contribute to wide-genome diversity and reorganization within this species and may have a tremendous impact on diagnostic and disease control. IMPORTANCE Mycoplasma bovis is a major pathogen of cattle that has significant detrimental effects on economics and animal welfare in cattle rearing worldwide. Understanding the evolution and the adaptative potential of pathogenic mycoplasma species in the natural host is essential to combating them. In this study, we documented the occurrence of mycoplasma chromosomal transfer, an atypical mechanism of horizontal gene transfer, in field isolates of M. bovis that provide new insights into the evolution of this pathogenic species in their natural host. Although these events are expected to occur at low frequency, their impact is accountable for genome-wide variety and reorganization within M. bovis species, which may compromise both diagnostic and disease control.


Assuntos
Mycoplasma bovis , Tenericutes , Animais , Bovinos , Transferência Genética Horizontal , Mosaicismo , Mycoplasma bovis/genética , Filogenia
2.
Transbound Emerg Dis ; 69(4): e883-e894, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34738732

RESUMO

Recent outbreaks of highly pathogenic avian influenza in southwest France have raised questions regarding the role of commensal wild birds in the introduction and dissemination of pathogens between poultry farms. To assess possible infectious contacts at the wild-domestic bird interface, the presence of Mycoplasma gallisepticum (MG) was studied in the two sympatric compartments in southwest France. Among various peridomestic wild birds (n = 385), standard PCR primers targeting the 16S rRNA of MG showed a high apparent prevalence (up to 45%) in cloacal swabs of European starlings (Sturnus vulgaris, n = 108), while the MG-specific mgc2 gene was not detected. No tracheal swab of these birds tested positive, and no clinical sign was observed in positive birds, suggesting commensalism in the digestive tract of starlings. A mycoplasma strain was then isolated from a starling swab and its whole genome was sequenced using both Illumina and Nanopore technologies. Phylogenetic analysis showed that it was closely related to MG and M. tullyi, although it was a distinct species. A pair of specific PCR primers targeting the mgc2-like gene of this MG-like strain was designed and used to screen again the same avian populations and a wintering urban population of starlings (n = 50). Previous PCR results obtained in starlings were confirmed to be mostly due to this strain (20/22 positive pools). In contrast, the strain was not detected in fresh faeces of urban starlings. Furthermore, it was detected in one cloacal pool of white wagtails, suggesting infectious transmissions between synanthropic birds with similar feeding behaviour. As the new Starling mycoplasma was not detected in free-range ducks (n = 80) in close contact with positive starlings, nor in backyard (n = 320) and free-range commercial (n = 720) chickens of the area, it might not infect poultry. However, it could be involved in mycoplasma gene transfer in such multi-species contexts.


Assuntos
Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Estorninhos , Animais , Animais Selvagens , Galinhas , Primers do DNA , Fazendas , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/genética , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , RNA Ribossômico 16S/genética , Estorninhos/genética
3.
Front Microbiol ; 10: 2753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849895

RESUMO

Microbial access to host nutrients is a key factor of the host-pathogen interplay. With their nearly minimal genome, wall-less bacteria of the class Mollicutes have limited metabolic capacities and largely depend on host nutrients for their survival. Despite these limitations, host-restricted mycoplasmas are widely distributed in nature and many species are pathogenic for humans and animals. Yet, only partial information is available regarding the mechanisms evolved by these minimal pathogens to meet their nutrients and the contribution of these mechanisms to virulence. By using the ruminant pathogen Mycoplasma bovis as a model system, extracellular DNA (eDNA) was identified as a limiting nutrient for mycoplasma proliferation under cell culture conditions. Remarkably, the growth-promoting effect induced by supplementation with eDNA was associated with important cytotoxicity for actively dividing host cells, but not confluent monolayers. To identify biological functions mediating M. bovis cytotoxicity, we produced a library of transposon knockout mutants and identified three critical genomic regions whose disruption was associated with a non-cytopathic phenotype. The coding sequences (CDS) disrupted in these regions pointed towards pyruvate metabolism as contributing to M. bovis cytotoxicity. Hydrogen peroxide was found responsible for eDNA-mediated M. bovis cytotoxicity, and non-cytopathic mutants were unable to produce this toxic metabolic compound. In our experimental conditions, no contact between M. bovis and host cells was required for cytotoxicity. Further analyses revealed important intra-species differences in eDNA-mediated cytotoxicity and H2O2 production, with some strains displaying a cytopathic phenotype despite no H2O2 production. Interestingly, the genome of strains PG45 and HB0801 were characterized by the occurrence of insertion sequences (IS) at close proximity to several CDSs found disrupted in non-cytopathic mutants. Since PG45 and HB0801 produced no or limited amount of H2O2, IS-elements might influence H2O2 production in M. bovis. These results confirm the multifaceted role of eDNA in microbial communities and further identify this ubiquitous material as a nutritional trigger of M. bovis cytotoxicity. M. bovis may thus take advantage of the multiple sources of eDNA in vivo to modulate its interaction with host cells, a way for this minimal pathogen to overcome its limited coding capacity.

4.
Comp Immunol Microbiol Infect Dis ; 63: 148-153, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30961812

RESUMO

Mycoplasma wenyonii, a hemoplasma infecting cattle, was never detected in France. In 2014, evocative inclusions were observed in erythrocytes from cattle presenting milk drops, anemia, and edema in Brittany (France). A survey was then initiated to investigate the epidemiological situation and correlate mycoplasma detection with clinical signs. For this purpose, a new PCR assay targeting polC gene was designed. Comparative results with published PCR assays place this new one as more specific, allowing a one-step diagnosis without further sequencing. A total of 181 cows were included in this study and 4.97% (n = 9) were positive, resulting in the first molecular identification of M. wenyonii in France. All positive animals presented anemia, edema and milk drop. When selecting animals presenting evocative clinical signs, the prevalence of M. wenyonii in Brittany was estimated to 25.6%. Further studies are needed to evaluate the importance of the infection, the implication of arthropods and the existence of asymptomatic carriers.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Mycoplasma/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Bovinos , França/epidemiologia , Tipagem Molecular/métodos , Mycoplasma/classificação , Mycoplasma/genética , Infecções por Mycoplasma/microbiologia , Prevalência
5.
PLoS Genet ; 15(1): e1007910, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668569

RESUMO

Horizontal Gene Transfer was long thought to be marginal in Mycoplasma a large group of wall-less bacteria often portrayed as minimal cells because of their reduced genomes (ca. 0.5 to 2.0 Mb) and their limited metabolic pathways. This view was recently challenged by the discovery of conjugative exchanges of large chromosomal fragments that equally affected all parts of the chromosome via an unconventional mechanism, so that the whole mycoplasma genome is potentially mobile. By combining next generation sequencing to classical mating and evolutionary experiments, the current study further explored the contribution and impact of this phenomenon on mycoplasma evolution and adaptation using the fluoroquinolone enrofloxacin (Enro), for selective pressure and the ruminant pathogen Mycoplasma agalactiae, as a model organism. For this purpose, we generated isogenic lineages that displayed different combination of spontaneous mutations in Enro target genes (gyrA, gyrB, parC and parE) in association to gradual level of resistance to Enro. We then tested whether these mutations can be acquired by a susceptible population via conjugative chromosomal transfer knowing that, in our model organism, the 4 target genes are scattered in three distinct and distant loci. Our data show that under antibiotic selective pressure, the time scale of the mutational pathway leading to high-level of Enro resistance can be readily compressed into a single conjugative step, in which several EnroR alleles were transferred from resistant to susceptible mycoplasma cells. In addition to acting as an accelerator for antimicrobial dissemination, mycoplasma chromosomal transfer reshuffled genomes beyond expectations and created a mosaic of resistant sub-populations with unpredicted and unrelated features. Our findings provide insights into the process that may drive evolution and adaptability of several pathogenic Mycoplasma spp. via an unconventional conjugative mechanism.


Assuntos
Evolução Molecular , Transferência Genética Horizontal/genética , Mycoplasma agalactiae/genética , Seleção Genética/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enrofloxacina/farmacologia , Fluoroquinolonas/farmacologia , Transferência Genética Horizontal/efeitos dos fármacos , Genoma/efeitos dos fármacos , Genômica , Mycoplasma agalactiae/efeitos dos fármacos , Seleção Genética/efeitos dos fármacos
6.
mBio ; 9(4)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970462

RESUMO

The discovery of integrative conjugative elements (ICEs) in wall-less mycoplasmas and the demonstration of their role in massive gene flows within and across species have shed new light on the evolution of these minimal bacteria. Of these, the ICE of the ruminant pathogen Mycoplasma agalactiae (ICEA) represents a prototype and belongs to a new clade of the Mutator-like superfamily that has no preferential insertion site and often occurs as multiple chromosomal copies. Here, functional genomics and mating experiments were combined to address ICEA functions and define the minimal ICEA chassis conferring conjugative properties to M. agalactiae Data further indicated a complex interaction among coresident ICEAs, since the minimal ICEA structure was influenced by the occurrence of additional ICEA copies that can trans-complement conjugation-deficient ICEAs. However, this cooperative behavior was limited to the CDS14 surface lipoprotein, which is constitutively expressed by coresident ICEAs, and did not extend to other ICEA proteins, including the cis-acting DDE recombinase and components of the mating channel whose expression was detected only sporadically. Remarkably, conjugation-deficient mutants containing a single ICEA copy knocked out in cds14 can be complemented by neighboring cells expressing CDS14. This result, together with those revealing the conservation of CDS14 functions in closely related species, may suggest a way for mycoplasma ICEs to extend their interaction outside their chromosomal environment. Overall, this report provides a first model of conjugative transfer in mycoplasmas and offers valuable insights into understanding horizontal gene transfer in this highly adaptive and diverse group of minimal bacteria.IMPORTANCE Integrative conjugative elements (ICEs) are self-transmissible mobile genetic elements that are key mediators of horizontal gene flow in bacteria. Recently, a new category of ICEs was identified that confer conjugative properties to mycoplasmas, a highly adaptive and diverse group of wall-less bacteria with reduced genomes. Unlike classical ICEs, these mobile elements have no preferential insertion specificity, and multiple mycoplasma ICE copies can be found randomly integrated into the host chromosome. Here, the prototype ICE of Mycoplasma agalactiae was used to define the minimal conjugative machinery and to propose the first model of ICE transfer in mycoplasmas. This model unveils the complex interactions taking place among coresident ICEs and suggests a way for these elements to extend their influence outside their chromosomal environment. These data pave the way for future studies aiming at deciphering chromosomal transfer, an unconventional mechanism of DNA swapping that has been recently associated with mycoplasma ICEs.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Mycoplasma agalactiae/genética , Conjugação Genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
7.
PLoS One ; 9(4): e93970, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699671

RESUMO

Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.


Assuntos
Proteínas de Bactérias/genética , Infecções por Mycoplasma/veterinária , Mycoplasma agalactiae/genética , Mycoplasma agalactiae/patogenicidade , Doenças dos Ovinos/microbiologia , Ovinos/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Feminino , Loci Gênicos , Interações Hospedeiro-Patógeno , Mutação , Infecções por Mycoplasma/microbiologia , Mycoplasma agalactiae/fisiologia
8.
PLoS One ; 6(9): e25291, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966487

RESUMO

Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of "minimal bacteria" with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, "transport and metabolism" was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions.


Assuntos
Mycoplasma agalactiae/genética , Mycoplasma agalactiae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Genoma Bacteriano , Cabras , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutação , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA