Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(5): e1906719, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943784

RESUMO

The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real-time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents. Until now, a few studies using the zebrafish model have only described semiquantitative results on key nanoparticle parameters. Here, a MACRO dedicated to automated quantitative methods is described for analyzing important parameters of nanoparticle behavior, such as circulation time and interactions with key target cells, macrophages, and endothelial cells. Direct comparison of four nanoparticle (NP) formulations in zebrafish embryos and mice reveals that data obtained in zebrafish can be used to predict NPs' behavior in the mouse model. NPs having long or short blood circulation in rodents behave similarly in the zebrafish embryo, with low circulation times being a consequence of NP uptake into macrophages or endothelial cells. It is proposed that the zebrafish embryo has the potential to become an important intermediate screening system for nanoparticle research to bridge the gap between cell culture studies and preclinical rodent models such as the mouse.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Embrião não Mamífero , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Camundongos , Nanopartículas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA