RESUMO
Inhibition of NF-κB inducing kinase (NIK) has been pursued as a promising therapeutic target for autoimmune disorders due to its highly regulated role in key steps of the NF-κB signaling pathway. Previously reported NIK inhibitors from our group were shown to be potent, selective, and efficacious, but had higher human dose projections than desirable for immunology indications. Herein we report the clearance-driven optimization of a NIK inhibitor guided by metabolite identification studies and structure-based drug design. This led to the identification of an azabicyclo[3.1.0]hexanone motif that attenuated in vitro and in vivo clearance while maintaining NIK potency and increasing selectivity over other kinases, resulting in a greater than ten-fold reduction in predicted human dose.
Assuntos
NF-kappa B , Transdução de Sinais , Humanos , NF-kappa B/metabolismo , Meia-Vida , Desenho de FármacosRESUMO
The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Fosfatase 1 , Transdução de Sinais , Proteínas ras , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Fosfosserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Especificidade por Substrato , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestruturaRESUMO
The Ras-RAF-MEK-ERK signaling axis, commonly mutated in human cancers, is highly regulated to prevent aberrant signaling in healthy cells. One of the pathway modulators, 14-3-3, a constitutive dimer, induces RAF dimerization and activation by binding to a phosphorylated motif C-terminal to the RAF kinase domain. Recent work has suggested that a C-terminal "DTS" region in BRAF is necessary for this 14-3-3-mediated activation. We show that the catalytic activity and ATP binding affinity of the BRAF:14-3-3 complex is insensitive to the presence or absence of the DTS, while the ATP sites of both BRAF molecules are identical and available for binding. We also present a crystal structure of the apo BRAF:14-3-3 complex showing that the DTS is not required to attain the catalytically active conformation of BRAF. Rather, BRAF dimerization induced by 14-3-3 is the key step in activation, allowing the active BRAF:14-3-3 tetramer to achieve catalytic activity comparable to the constitutively active oncogenic BRAF V600E mutant.
Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Humanos , Ligação Proteica , Multimerização Proteica , Transdução de SinaisRESUMO
The RAS-RAF-MEK-ERK signaling axis is frequently activated in human cancers. Physiological concentrations of ATP prevent formation of RAF kinase-domain (RAFKD) dimers that are critical for activity. Here we present a 2.9-Å-resolution crystal structure of human BRAFKD in complex with MEK and the ATP analog AMP-PCP, revealing interactions between BRAF and ATP that induce an inactive, monomeric conformation of BRAFKD. We also determine how 14-3-3 relieves the negative regulatory effect of ATP through a 2.5-Å-resolution crystal structure of the BRAFKD-14-3-3 complex, in which dimeric 14-3-3 enforces a dimeric BRAFKD assembly to increase BRAF activity. Our data suggest that most oncogenic BRAF mutations alter interactions with ATP and counteract the negative effects of ATP binding by lowering the threshold for RAF dimerization and pathway activation. Our study establishes a framework for rationalizing oncogenic BRAF mutations and provides new avenues for improved RAF-inhibitor discovery.
Assuntos
Proteínas 14-3-3/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas 14-3-3/química , Trifosfato de Adenosina/análogos & derivados , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/químicaRESUMO
Some antibodies exhibit elevated viscosity at high concentrations, making them poorly suited for therapeutic applications requiring administration by injection such as subcutaneous or ocular delivery. Here we studied an anti-IL-13/IL-17 bispecific IgG4 antibody, which has anomalously high viscosity compared to its parent monospecific antibodies. The viscosity of the bispecific IgG4 in solution was decreased by only ~30% in the presence of NaCl, suggesting electrostatic interactions are insufficient to fully explain the drivers of viscosity. Intriguingly, addition of arginine-HCl reduced the viscosity of the bispecific IgG4 by ~50% to its parent IgG level. These data suggest that beyond electrostatics, additional types of interactions such as cation-π and/or π-π may contribute to high viscosity more significantly than previously understood. Molecular dynamics simulations of antibody fragments in the mixed solution of free arginine and explicit water were conducted to identify hotspots involved in self-interactions. Exposed surface aromatic amino acids displayed an increased number of contacts with arginine. Mutagenesis of the majority of aromatic residues pinpointed by molecular dynamics simulations effectively decreased the solution's viscosity when tested experimentally. This mutational method to reduce the viscosity of a bispecific antibody was extended to a monospecific anti-GCGR IgG1 antibody with elevated viscosity. In all cases, point mutants were readily identified that both reduced viscosity and retained antigen-binding affinity. These studies demonstrate a new approach to mitigate high viscosity of some antibodies by mutagenesis of surface-exposed aromatic residues on complementarity-determining regions that may facilitate some clinical applications.
Assuntos
Anticorpos Biespecíficos/química , Arginina/química , Regiões Determinantes de Complementaridade/química , Imunoglobulina G/química , Animais , Humanos , Interleucina-13/imunologia , Interleucina-17/imunologia , Camundongos , Mutagênese Sítio-Dirigida , Eletricidade Estática , ViscosidadeRESUMO
NF-κB-inducing kinase (NIK) is a protein kinase central to the noncanonical NF-κB pathway downstream from multiple TNF receptor family members, including BAFF, which has been associated with B cell survival and maturation, dendritic cell activation, secondary lymphoid organ development, and bone metabolism. We report herein the discovery of lead chemical series of NIK inhibitors that were identified through a scaffold-hopping strategy using structure-based design. Electronic and steric properties of lead compounds were modified to address glutathione conjugation and amide hydrolysis. These highly potent compounds exhibited selective inhibition of LTßR-dependent p52 translocation and transcription of NF-κB2 related genes. Compound 4f is shown to have a favorable pharmacokinetic profile across species and to inhibit BAFF-induced B cell survival in vitro and reduce splenic marginal zone B cells in vivo.
Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Quinase Induzida por NF-kappaBRESUMO
Receptor-interacting protein kinase 4 (RIPK4) is a highly conserved regulator of epidermal differentiation. Members of the RIPK family possess a common kinase domain as well as unique accessory domains that likely dictate subcellular localization and substrate preferences. Mutations in human RIPK4 manifest as Bartsocas-Papas syndrome (BPS), a genetic disorder characterized by severe craniofacial and limb abnormalities. We describe the structure of the murine Ripk4 (MmRipk4) kinase domain, in ATP- and inhibitor-bound forms. The crystallographic dimer of MmRipk4 is similar to those of RIPK2 and BRAF, and we show that the intact dimeric entity is required for MmRipk4 catalytic activity through a series of engineered mutations and cell-based assays. We also assess the impact of BPS mutations on protein structure and activity to elucidate the molecular origins of the disease.
Assuntos
Trifosfato de Adenosina/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Camundongos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/químicaRESUMO
Despite decades of extensive drug discovery efforts, there are currently no targeted therapies approved to treat KRAS mutant cancers. In this review, we highlight the challenges and opportunities in targeting KRAS mutant tumors through inhibition of mitogen-activated protein kinase (MAPK) signaling with conformation-specific kinase inhibitors. Through structural analysis and mechanistic studies with BRAF and mitogen-activated protein kinase (MEK) inhibitors, we describe how kinase-dependent and -independent functions of MAPK signaling components regulate KRAS-driven tumorigenesis and how these insights can be used to treat RAS mutant cancers with small molecule kinase inhibitors.
Assuntos
Genes ras/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Neoplasias/genética , Antineoplásicos/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas B-raf/genética , Quinases raf/antagonistas & inibidoresRESUMO
We report here structure-guided optimization of a novel series of NF-κB inducing kinase (NIK) inhibitors. Starting from a modestly potent, low molecular weight lead, activity was improved by designing a type 11/2 binding mode that accessed a back pocket past the methionine-471 gatekeeper. Divergent binding modes in NIK and PI3K were exploited to dampen PI3K inhibition while maintaining NIK inhibition within these series. Potent compounds were discovered that selectively inhibit the nuclear translocation of NF-κB2 (p52/REL-B) but not canonical NF-κB1 (REL-A/p50).
Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Isoxazóis/farmacologia , Oxazepinas/farmacologia , Oxazóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , Cães , Células HEK293 , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de Anel em Ponte/síntese química , Compostos Heterocíclicos de Anel em Ponte/química , Humanos , Imidazóis/farmacologia , Isoxazóis/síntese química , Isoxazóis/química , Camundongos , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Oxazepinas/síntese química , Oxazepinas/química , Oxazóis/síntese química , Oxazóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Quinase Induzida por NF-kappaBRESUMO
In this issue of Structure, Castañeda et al. (2016b) use multi-disciplinary approaches including NMR techniques, small-angle neutron scattering, and docking to convincingly demonstrate that K27-linked diubiquitin is relatively rigid with unexpected similarity to the conformation of K48-linked diubiquitin bound to the UBA2 domain of hHR23a.
Assuntos
Modelos Moleculares , Ubiquitina/química , Espectroscopia de Ressonância Magnética , Espalhamento a Baixo Ângulo , Ubiquitinas/químicaRESUMO
Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the ß3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy.
Assuntos
Genes erbB-1 , Genes erbB-2 , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Pareamento de Bases/genética , Sequência Conservada , Dimerização , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/genética , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Conformação Proteica , Mapeamento de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-AtividadeRESUMO
A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled.
RESUMO
SAR studies focused on improving the pharmacokinetic (PK) properties of the previously reported potent and selective Btk inhibitor CGI-1746 (1) resulted in the clinical candidate GDC-0834 (2), which retained the potency and selectivity of CGI-1746, but with much improved PK in preclinical animal models. Structure based design efforts drove this work as modifications to 1 were investigated at both the solvent exposed region as well as 'H3 binding pocket'. However, in vitro metabolic evaluation of 2 revealed a non CYP-mediated metabolic process that was more prevalent in human than preclinical species (mouse, rat, dog, cyno), leading to a high-level of uncertainly in predicting human pharmacokinetics. Due to its promising potency, selectivity, and preclinical efficacy, a single dose IND was filed and 2 was taken in to a single dose phase I trial in healthy volunteers to quickly evaluate the human pharmacokinetics. In human, 2 was found to be highly labile at the exo-cyclic amide bond that links the tetrahydrobenzothiophene moiety to the central aniline ring, resulting in insufficient parent drug exposure. This information informed the back-up program and discovery of improved inhibitors.
Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinonas/química , Tiofenos/química , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Ratos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/farmacocinéticaRESUMO
A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.
RESUMO
In this issue of Structure, Liu and colleagues report the structure of the TNF superfamily member LIGHT bound to decoy receptor 3 (DcR3). Both LIGHT and DcR3 interact with multiple binding partners. The authors identify a conserved interaction important for affinity as well as additional interactions that can be targeted to introduce selectivity.
Assuntos
Membro 6b de Receptores do Fator de Necrose Tumoral/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , HumanosRESUMO
Numerous oncogenic mutations occur within the BRAF kinase domain (BRAF(KD)). Here we show that stable BRAF-MEK1 complexes are enriched in BRAF(WT) and KRAS mutant (MT) cells but not in BRAF(MT) cells. The crystal structure of the BRAF(KD) in a complex with MEK1 reveals a face-to-face dimer sensitive to MEK1 phosphorylation but insensitive to BRAF dimerization. Structure-guided studies reveal that oncogenic BRAF mutations function by bypassing the requirement for BRAF dimerization for activity or weakening the interaction with MEK1. Finally, we show that conformation-specific BRAF inhibitors can sequester a dormant BRAF-MEK1 complex resulting in pathway inhibition. Taken together, these findings reveal a regulatory role for BRAF in the MAPK pathway independent of its kinase activity but dependent on interaction with MEK.
Assuntos
MAP Quinase Quinase 1/química , Proteínas Proto-Oncogênicas B-raf/química , Domínio Catalítico , Cristalografia por Raios X , Células HCT116 , Células HEK293 , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Proteínas ras/genéticaRESUMO
Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility.
Assuntos
Proteínas Sanguíneas/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Sulfonamidas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Cristalografia por Raios X , Cães , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células Madin Darby de Rim Canino , Modelos Moleculares , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ratos , Solubilidade , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/químicaRESUMO
Homotrimeric TNF superfamily ligands signal by inducing trimers of their cognate receptors. As a biologically active heterotrimer, Lymphotoxin(LT)α1ß2 is unique in the TNF superfamily. How the three unique potential receptor-binding interfaces in LTα1ß2 trigger signaling via LTß Receptor (LTßR) resulting in lymphoid organogenesis and propagation of inflammatory signals is poorly understood. Here we show that LTα1ß2 possesses two binding sites for LTßR with distinct affinities and that dimerization of LTßR by LTα1ß2 is necessary and sufficient for signal transduction. The crystal structure of a complex formed by LTα1ß2, LTßR, and the fab fragment of an antibody that blocks LTßR activation reveals the lower affinity receptor-binding site. Mutations targeting each potential receptor-binding site in an engineered single-chain variant of LTα1ß2 reveal the high-affinity site. NF-κB reporter assays further validate that disruption of receptor interactions at either site is sufficient to prevent signaling via LTßR.
Assuntos
Citocinas/química , Heterotrímero de Linfotoxina alfa1 e beta2/metabolismo , Receptor beta de Linfotoxina/metabolismo , Complexos Multiproteicos/imunologia , Transdução de Sinais/imunologia , Cromatografia em Gel , Citocinas/imunologia , Dimerização , Humanos , Complexos Multiproteicos/metabolismoRESUMO
The structure-activity relationships of T0901317 analogs were explored as RORc inverse agonists using the principles of property- and structure-based drug design. An X-ray co-crystal structure of T0901317 and RORc was obtained and provided molecular insight into why T0901317 functioned as an inverse agonist of RORc; whereas, the same ligand functioned as an agonist of FXR, LXR, and PXR. The structural data was also used to design inhibitors with improved RORc biochemical and cellular activities. The improved inhibitors possessed enhanced selectivity profiles (rationalized using the X-ray crystallographic data) against other nuclear receptors.
Assuntos
Desenho de Fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Propanóis/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Simulação de Dinâmica Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismoRESUMO
Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic ß-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.