Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(38): 21664-21676, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34581335

RESUMO

Decoherence arises from a fluctuating spin environment, captured by its noise spectrum S(ω). Dynamical decoupling (DD) with n π pulses extends the dephasing time if the associated filter function attenuates S(ω). Inversely, DD noise spectroscopy (DDNS) reconstructs S(ω) from DD data by approximating the filters pass band by a δ-function. This restricts application to qubit-like spin systems with inherently long dephasing times and/or many applicable pulses. We introduce regularized DDNS to lift this limitation and thereby infer S(ω) from DD traces of paramagnetic centers in glassy o-terphenyl and water-glycerol matrices recorded with n ≤ 5. For nitroxide radicals at low temperatures, we utilize deuteration to identify distinct matrix- and spin center-induced spectral features. The former extends up to a matrix-specific cut-off frequency and characterizes nuclear spin diffusion. We demonstrate that rotational tunneling of intramolecular methyl groups drives the latter process, whereas at elevated temperatures S(ω) reflects the classical methyl group reorientation. Ultimately, S(ω) visualizes and quantifies variations in the electron spins couplings and thus reports on the underlying spin dynamics as a powerful decoherence descriptor.

2.
Nat Chem Biol ; 17(5): 608-614, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686294

RESUMO

Many RNA-binding proteins undergo liquid-liquid phase separation, which underlies the formation of membraneless organelles, such as stress granules and P-bodies. Studies of the molecular mechanism of phase separation in vitro are hampered by the coalescence and sedimentation of organelle-sized droplets interacting with glass surfaces. Here, we demonstrate that liquid droplets of fused in sarcoma (FUS)-a protein found in cytoplasmic aggregates of amyotrophic lateral sclerosis and frontotemporal dementia patients-can be stabilized in vitro using an agarose hydrogel that acts as a cytoskeleton mimic. This allows their spectroscopic characterization by liquid-phase NMR and electron paramagnetic resonance spectroscopy. Protein signals from both dispersed and condensed phases can be observed simultaneously, and their respective proportions can be quantified precisely. Furthermore, the agarose hydrogel acts as a cryoprotectant during shock-freezing, which facilitates pulsed electron paramagnetic resonance measurements at cryogenic temperatures. Surprisingly, double electron-electron resonance measurements revealed a compaction of FUS in the condensed phase.


Assuntos
Crioprotetores/química , Hidrogéis/química , Proteína FUS de Ligação a RNA/química , Sefarose/química , Materiais Biomiméticos/química , Clonagem Molecular , Citoesqueleto/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucarióticas/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química
3.
J Magn Reson ; 287: 65-73, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29289819

RESUMO

Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA