Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(16): 165902, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31658458

RESUMO

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

2.
J Phys Condens Matter ; 31(18): 185501, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30731441

RESUMO

We report the high-pressure behavior of plasmon in polycrystalline Li up to 15 GPa at room temperature studied by inelastic x-ray scattering and ab initio calculation. The plasmon energy ([Formula: see text]) increases with decreasing atomic volume ([Formula: see text]), and the [Formula: see text] slope exhibits a discontinuity at bcc → fcc structural phase boundary reflecting the electronic band structure change. The plasmon peak width ([Formula: see text]) versus momentum transfer (q) curve of bcc-Li below 6.5 GPa keeps similar parabola-like shape. Above 8.4 GPa, where Li is in fcc, it changes from that of bcc-Li and has a convex shape.

3.
J Phys Condens Matter ; 30(34): 343002, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30020083

RESUMO

Single adatoms offer an exceptional playground for studying magnetism and its associated dynamics at the atomic scale. Here we review recent results on single adatoms deposited on metallic substrates, based on time-dependent density functional theory. First we analyze quantum zero-point spin-fluctuations (ZPSF) as calculated from the fluctuation-dissipation theorem, and show how they affect the magnetic stability by modifying the magnetic anisotropy energy. We also assess the impact of ZPSF in the limit of small hybridization to the substrate characteristic of semi-insulating substrates, connecting to recent experimental investigations where magnetic stability of a single adatom was achieved for the first time. Secondly, we inspect further the dynamics of single adatoms by considering the longitudinal and transverse spin-relaxation processes, whose time-scales are analyzed and related to the underlying electronic structure of both the adatom and the substrate. Thirdly, we analyze spin-fluctuation modes of paramagnetic adatoms, i.e. adatoms where the Stoner criterion for magnetism is almost fulfilled. Interestingly, such modes can develop well-defined peaks in the meV range, their main characteristics being determined by two fundamental electronic properties, namely the Stoner parameter and the density of states at the Fermi level. Furthermore, simulated inelastic scanning tunneling spectroscopy curves reveal that these spin-fluctuation modes can be triggered by tunneling electrons, opening up potential applications also for paramagnetic adatoms. Lastly, an overview of the outstanding issues and future directions is given.

4.
Phys Rev Lett ; 120(5): 057402, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481166

RESUMO

The recent claim of having produced metallic hydrogen in the laboratory relies on measurements of optical spectra. Here, we present first-principles calculations of the reflectivity of hydrogen between 400 and 600 GPa in the I4_{1}/amd crystal structure, the one predicted at these pressures, based on both time-dependent density functional and Eliashberg theories, thus, covering the optical properties from the infrared to the ultraviolet regimes. Our results show that atomic hydrogen displays an interband plasmon at around 6 eV that abruptly suppresses the reflectivity, while the large superconducting gap energy yields a sharp decrease of the reflectivity in the infrared region approximately at 120 meV. The experimentally estimated electronic scattering rates in the 0.7-3 eV range are in agreement with our theoretical estimations, which show that the huge electron-phonon interaction of the system dominates the electronic scattering in this energy range. The remarkable features in the optical spectra predicted here encourage extending the optical measurements to the infrared and ultraviolet regions as our results suggest optical measurements can potentially identify high-pressure phases of hydrogen.

5.
Phys Rev Lett ; 119(1): 017203, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731747

RESUMO

We predict the existence of paramagnetic spin excitations (PSE) in nonmagnetic single adatoms. Our calculations demonstrate that PSE develop a well-defined structure in the meV region when the adatom's Stoner criterion for magnetism is close to the critical point. We further reveal a subtle tunability and enhancement of PSE by external magnetic fields. Finally, we show how PSE can be detected as moving steps in the dI/dV signal of inelastic scanning tunneling spectroscopy, opening a potential route for experimentally accessing electronic properties of nonmagnetic adatoms, such as the Stoner parameter.

6.
Nano Lett ; 16(7): 4305-11, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27248465

RESUMO

Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin-orbit coupling, and (iii) electron-hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations.

7.
Phys Rev Lett ; 109(15): 156401, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102342

RESUMO

We present a comprehensive theoretical investigation of the light absorption rate at a Pb/Ge(111)-ß√3 × âˆš3R30° surface with strong spin-orbit coupling. Our calculations show that electron spin-flip transitions cause as much as 6% of the total light absorption, representing 1 order of magnitude enhancement over Rashba-like systems. Thus, we demonstrate that a substantial part of the light irradiating this nominally nonmagnetic surface is attenuated in spin-flip processes. Remarkably, the spin-flip transition probability is structured in well-defined hot spots within the Brillouin zone, where the electron spin experiences a sudden 90° rotation. This mechanism offers the possibility of an experimental approach to the spin-orbit phenomena by optical means.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA