Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Virol ; 64(1): 88-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180422

RESUMO

Tomato spotted wilt virus (TSWV) is an economically important pathogen of many crops worldwide. However, prior to this study, only one complete genome sequence of an African TSWV isolate was available in public databases. This limits genetic diversity and evolutionary studies of the pathogen on the continent. TSWV was detected in symptomatic Zimbabwean chrysanthemum plants using late-ral flow kits. The presence of the pathogen was subsequently confirmed by double antibody sandwich enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction (RT-PCR). Total RNAs for RT-PCR and next-generation sequencing (NGS) were extracted using an RNA extraction kit. NGS performed on an Illumina HiSeq platform was used to recover the full TSWV genome and analyzed by different software packages. The tripartite genome of the Zimbabwe TSWV isolate consisted of L, M and S RNAs of 8914, 4824 and 2968 nucleotides, respectively. This isolate shared highest protein and nucleotide sequence identities with the isolate LK-1 from neighboring South Africa. The Zimbabwe TSWV isolate was found to be a non-recombinant and non-resistance-breaking. This study provides the first full genome of TSWV from Zimbabwe. It also adds useful information towards understanding the evolution of the pathogen. Keywords: Africa; tospovirus; phylogenetic analysis; recombination; virus identification.


Assuntos
Chrysanthemum/virologia , Genoma Viral , Doenças das Plantas/virologia , Tospovirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Tospovirus/genética , Zimbábue
2.
Arch Virol ; 161(8): 2321-3, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27216927

RESUMO

Zucchini shoestring virus (ZSSV) has been proposed to be a putative potyvirus in the papaya ringspot virus (PRSV) cluster, based on the sequence similarity of its coat protein to those of related potyviruses. ZSSV has been associated with the outbreak of a damaging disease of baby marrow (Cucurbita pepo L.) that had been observed throughout the province of KwaZulu-Natal, in the Republic of South Africa (RSA). We report the genome sequence of ZSSV, determined by next-generation sequencing of total RNA extracted from an infected baby marrow (Cucurbita pepo L.). The ZSSV genome is 10,295 nucleotides long excluding the poly(A) tail and displays a typical potyvirus organization. Algerian watermelon mosaic virus (AWMV; EU410442.1) was identified as the closest relative of ZSSV, sharing the highest nucleotide sequence identity of 65.68%. The nucleotide and amino acid sequence identity values for each protein support the differentiation of ZSSV as a member of a distinct species in the genus Potyvirus. This taxonomic position was also confirmed using the Pairwise Sequence Comparison online tool from the National Center for Biotechnology Information. Phylogenetic analysis of the polyprotein coding sequence of ZSSV grouped ZSSV together with AWMV and Moroccan watermelon mosaic virus, but in different clusters. ZSSV is the second cucurbit-infecting virus in the PRSV cluster present in RSA.


Assuntos
Genoma Viral , Potyvirus/genética , Potyvirus/isolamento & purificação , Sequência de Bases , Carica/virologia , Cucurbita/virologia , Genômica , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Potyvirus/classificação , RNA Viral/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA