Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Investig ; 25(8): 4987-5000, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33544199

RESUMO

OBJECTIVES: During periodontitis, chronic inflammation triggers soft tissue breakdown, and hyaluronan is degraded into fragments of low molecular weight (LMW-HA). This investigation aimed to elucidate whether LMW-HA fragments with immunogenic potential on T lymphocytes remain in periodontal tissues after periodontal treatment. MATERIALS AND METHODS: GCF samples were obtained from 15 periodontitis-affected patients and the LMW-HA, RANKL, and OPG levels were analyzed before and after 6 months of periodontal treatment by ELISA. Eight healthy individuals were analyzed as controls. Besides, human T lymphocytes were purified, exposed to infected dendritic cells, and pulsed with LMW-HA. Non-treated T lymphocytes were used as control. The expression levels of the transcription factors and cytokines that determine the Th1, Th17, and Th22 lymphocyte differentiation and function were analyzed by RT-qPCR. Similarly, the expression levels of RANKL and CD44 were analyzed. RESULTS: In the GCF samples of periodontitis-affected patients, higher levels of LMW-HA were detected when compared with those of healthy individuals (52.1 ± 15.4 vs. 21.4 ± 12.2, p < 0.001), and these increased levels did not decrease after periodontal therapy (52.1 ± 15.4 vs. 45.7 ± 15.9, p = 0.158). Similarly, the RANKL levels and RANKL/OPG ratios did not change after periodontal therapy. Furthermore, in human T lymphocytes, LMW-HA induced higher expression levels of the Th1, Th17, and Th22-related transcription factors and cytokines, as well as CD44 and RANKL, as compared with non-treated cells. CONCLUSIONS: In some patients, increased levels of LMW-HA persist in periodontal tissues after conventional periodontal therapy, and these remaining LMW-HA fragments with immunostimulatory potential could induce the polarization of a pathologic Th1/Th17/Th22-pattern of immune response on T lymphocytes. CLINICAL RELEVANCE: The persistence of increased levels of LMW-HA in periodontal tissues after periodontal therapy could favor the recurrence of the disease and further breakdown of periodontal supporting tissues.


Assuntos
Ácido Hialurônico , Periodontite , Citocinas , Humanos , Peso Molecular , Periodontite/tratamento farmacológico , Ligante RANK , Células Th17
2.
Clin Oral Investig ; 23(4): 1887-1894, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30225677

RESUMO

OBJECTIVES: Periodontitis is a chronic inflammatory disease characterized by tooth-supporting tissue destruction, which is elicited by the host's immune response triggered against periodonto-pathogen bacteria. During periodontal tissue destruction, extracellular matrix components are metabolized and fragmented. Some extracellular matrix component-derived fragments, such as low-molecular-weight hyaluronan (LMW-HA), have potent immunogenic potential, playing a role as damage-associated molecular patterns (DAMPs) during activation of immune cells. Dendritic cells (DCs) play a central role in the host's immune response displayed during periodontitis; thus, this study aimed to analyze whether LMW-HA has an immunostimulatory activity on DCs when stimulated with periodonto-pathogen bacteria. MATERIALS AND METHODS: LMW-HA-treated and non-treated DCs were stimulated with Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis and the mRNA expression for cytokines tumor necrosis factor-α (TNF-alpha), interleukin-1ß (IL-1B), interleukin-6 (IL-6), and interleukin-23 (IL-23A) was quantified by RT-qPCR. In addition, transcription factors interferon regulatory factor 4 (IRF4), interferon regulatory factor 8 (IRF8), neurogenic locus notch homolog protein 2 (NOTCH2), and basic leucine zipper ATF-like transcription factor 3 (BATF3), involved in DC activation, were analyzed. RESULTS: Higher expression levels of TNF-alpha, IL-1B, IL-6, and IL-23A were detected in LMW-HA-treated DCs after bacterial infection, as compared with non-treated DCs. When LMW-HA-treated DCs were infected with A. actinomycetemcomitans, higher levels of IRF4, NOTCH2, and BATF3 were detected compared with non-treated cells; whereas against P. gingivalis infection, increased levels of IRF4 and NOTCH2 were detected. CONCLUSION: LMW-HA plays an immunostimulatory role on the immune response triggered by DCs during infection with A. actinomycetemcomitans or P. gingivalis. CLINICAL RELEVANCE: Detection of extracellular matrix component-derived fragments produced during periodontal tissue destruction, such as LMW-HA, could explain at least partly unsuccessful periodontal treatment and the chronicity of the disease.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aggregatibacter actinomycetemcomitans , Células Dendríticas/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Porphyromonas gingivalis , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/microbiologia , Matriz Extracelular , Humanos , Peso Molecular , Periodontite
3.
J Periodontol ; 89(10): 1249-1261, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030845

RESUMO

BACKGROUND: Aggregatibacter actinomycetemcomitans expresses several virulence factors that may contribute to the pathogenesis of periodontitis. Based on the antigenicity of the O-polysaccharide component of the lipopolysaccharide (LPS), different A. actinomycetemcomitans serotypes have been described. Among them, serotype b has demonstrated a stronger capacity to trigger Th1 and Th17-associated cytokine, CC-chemokine, and CC-chemokine receptor production on immune cells in vitro. With a murine model of experimental periodontitis, this investigation aimed to analyze the alveolar bone resorption and the pattern of immune response triggered by the different A. actinomycetemcomitans serotypes within periodontal lesions. METHODS: For periodontal lesion induction, mice were orally infected with the different A. actinomycetemcomitans serotypes or their purified LPS. Alveolar bone resorption was analyzed using microcomputed tomography and scanning electron microscopy. Bacterial infection, receptor activator of nuclear factor-kappa B ligand (RANKL) and Th1 and Th17-associated cytokine, CC-chemokine, and CC-chemokine receptor levels were quantified by quantitative polymerase chain reaction (qPCR). T lymphocytes isolated from periodontal lesions were analyzed by flow cytometry. RESULTS: In periodontal lesions, serotype b of A. actinomycetemcomitans induced higher alveolar bone resorption and expression of RANKL compared with the other serotypes. In addition, serotype b induced greater levels of Th1- and Th17-related cytokines, CC-chemokines, and CC-chemokine receptors than the others. Similarly, higher numbers of infiltrating Th1 and Th17 lymphocytes were detected in serotype b-induced periodontal lesions. CONCLUSIONS: These results demonstrate that periodontal lesions induced with different A. actinomycetemcomitans serotypes elicited distinct alveolar bone resorption and immune response. In particular, serotype b was more pathogenic than the others and induced stronger Th1 and Th17 patterns of immune responses during experimental periodontitis.


Assuntos
Aggregatibacter actinomycetemcomitans , Periodontite , Animais , Camundongos , Sorogrupo , Células Th17 , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA