Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14852, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684300

RESUMO

Understanding processes leading to disease emergence is important for effective disease management and prevention of future epidemics. Utilizing whole genome sequencing, we studied the phylogenetic relationship and diversity of two populations of the bacterial oak pathogen Lonsdalea quercina from western North America (Colorado and California) and compared these populations to other Lonsdalea species found worldwide. Phylogenetic analysis separated Colorado and California populations into two Lonsdalea clades, with genetic divergence near species boundaries, suggesting long isolation and populations that differ in genetic structure and distribution and possibly their polyphyletic origin. Genotypes collected from different host species and habitats were randomly distributed within the California cluster. Most Colorado isolates from introduced planted trees, however, were distinct from three isolates collected from a natural stand of Colorado native Quercus gambelii, indicating cryptic population structure. The California identical core genotypes distribution varied, while Colorado identical core genotypes were always collected from neighboring trees. Despite its recent emergence, the Colorado population had higher nucleotide diversity, possibly due to its long presence in Colorado or due to migrants moving with nursery stock. Overall, results suggest independent pathogen emergence in two states likely driven by changes in host-microbe interactions due to ecosystems changes. Further studies are warranted to understand evolutionary relationships among L. quercina from different areas, including the red oak native habitat in northeastern USA.


Assuntos
Geraniaceae , Quercus , Quercus/genética , Ecossistema , Metagenômica , Filogenia , Enterobacteriaceae , América do Norte
2.
Sci Rep ; 12(1): 7832, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551491

RESUMO

Profiling the host-mycobiota interactions in healthy vs. diseased forest ecosystems helps understand the dynamics of understudied yet increasingly important threats to forest health that are emerging due to climate change. We analyzed the structural and functional changes of the mycobiota and the responses of Pinus contorta in the Lophodermella needle cast pathosystem through metabarcoding and metatranscriptomics. When needles transitioned from asymptomatic to symptomatic, dysbiosis of the mycobiota occurred, but with an enrichment of Lophodermella pathogens. Many pathogenicity-related genes were highly expressed by the mycobiota at the necrotrophic phase, showing an active pathogen response that are absent in asymptomatic needles. This study also revealed that Lophodermella spp. are members of a healthy needle mycobiota that have latent lifestyles suggesting that other pine needle pathogens may have similar biology. Interestingly, Pinus contorta upregulated defense genes in healthy needles, indicating response to fungal recognition, while a variety of biotic and abiotic stresses genes were activated in diseased needles. Further investigation to elucidate the possible antagonistic interplay of other biotic members leading to disease progression and/or suppression is warranted. This study provides insights into microbial interactions in non-model pathosystems and contributes to the development of new forest management strategies against emerging latent pathogens.


Assuntos
Ascomicetos , Pinus , Traqueófitas , Ascomicetos/genética , Ecossistema , Traqueófitas/genética , Transcriptoma
3.
Fungal Biol ; 124(2): 144-154, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32008755

RESUMO

Phellinus noxius is a root-decay pathogen with a pan-tropical/subtropical distribution that attacks a wide range of tree hosts. For this study, genomic sequencing was conducted on P. noxius isolate P919-02W.7 from Federated States of Micronesia (Pohnpei), and its gene expression profile was analyzed using different host wood (Acer, Pinus, Prunus, and Salix) substrates. The assembled genome was 33.92 Mbp with 2954 contigs and 9389 predicted genes. Only small differences were observed in size and gene content in comparison with two other P. noxius genome assemblies (isolates OVT-YTM/97 from Hong Kong, China and FFPRI411160 from Japan, respectively). Genome analysis of P. noxius isolate P919-02W.7 revealed 488 genes encoding proteins related to carbohydrate and lignin metabolism, many of these enzymes are associated with degradation of plant cell wall components. Most of the transcripts expressed by P. noxius isolate P919-02W.7 were similar regardless of wood substrates. This study highlights the vast suite of decomposing enzymes produced by P. noxius, which suggests potential for degrading diverse wood substrates, even from temperate host trees. This information contributes to our understanding of pathogen ecology, mechanisms of wood decomposition, and pathogenic/saprophytic lifestyle.


Assuntos
Basidiomycota/genética , Genoma Fúngico , Phellinus/genética , Árvores/microbiologia , Madeira/metabolismo , Acer/microbiologia , China , Proteínas Fúngicas/metabolismo , Variação Genética , Genômica , Japão , Lignina/metabolismo , Micronésia , Phellinus/enzimologia , Filogeografia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Prunus/microbiologia , Salix/microbiologia , Transcriptoma , Madeira/microbiologia
4.
Fungal Genet Biol ; 125: 84-92, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716558

RESUMO

Raffaelea lauricola is an invasive fungal pathogen and symbiont of the redbay ambrosia beetle (Xyleborus glabratus) that has caused widespread mortality to redbay (Persea borbonia) and other Lauraceae species in the southeastern USA. We compare two genomes of R. lauricola (C2646 and RL570) to seven other related Ophiostomatales species including R. aguacate (nonpathogenic close relative of R. lauricola), R. quercus-mongolicae (associated with mortality of oaks in Korea), R. quercivora (associated with mortality of oaks in Japan), Grosmannia clavigera (cause of blue stain in conifers), Ophiostoma novo-ulmi (extremely virulent causal agent of Dutch elm disease), O. ulmi (moderately virulent pathogen that cause of Dutch elm disease), and O. piceae (blue-stain saprophyte of conifer logs and lumber). Structural and functional annotations were performed to determine genes that are potentially associated with disease development. Raffaelea lauricola and R. aguacate had the largest genomes, along with the largest number of protein-coding genes, genes encoding secreted proteins, small-secreted proteins, ABC transporters, cytochrome P450 enzymes, CAZYmes, and proteases. Our results indicate that this large genome size was not related to pathogenicity but was likely lineage specific, as the other pathogens in Raffaelea (R. quercus-mongolicae and R. quercivora) had similar genome characteristics to the Ophiostoma species. A diverse repertoire of wood-decaying enzymes were identified in each of the genomes, likely used for toxin neutralization rather than wood degradation. Lastly, a larger number of species-specific, secondary metabolite, synthesis clusters were identified in R. lauricola suggesting that it is well equipped as a pathogen, which could explain its success as a pathogen of a wide range of lauraceous hosts.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Ophiostomatales/genética , Doenças das Plantas/genética , Proteínas Fúngicas/classificação , Espécies Introduzidas , Lauraceae/microbiologia , Anotação de Sequência Molecular , Ophiostomatales/patogenicidade , Doenças das Plantas/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA