Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell Biosci ; 14(1): 70, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835047

RESUMO

BACKGROUND: The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis. RESULTS: To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts. CONCLUSIONS: Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.

2.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798531

RESUMO

Orthodontic maxillary expansion relies on intrinsic mid-palatal suture mechanobiology to induce guided osteogenesis, yet establishment of the mid-palatal suture within the continuous secondary palate and causes of maxillary insufficiency remain poorly understood. In contrast, advances in cranial suture research hold promise to improve surgical repair of prematurely fused cranial sutures in craniosynostosis to potentially restore the obliterated signaling environment and ensure continual success of the intervention. We hypothesized that mid-palatal suture establishment is governed by shared principles with calvarial sutures and involves functional linkage between expanding primary ossification centres with the midline mesenchyme. We characterized establishment of the mid-palatal suture from late embryonic to early postnatal timepoints. Suture establishment was visualized using histological techniques and multimodal transcriptomics. We identified that mid-palatal suture formation depends on a spatiotemporally controlled signalling milieu in which tendon-associated genes play a significant role. We mapped relationships between extracellular matrix-encoding gene expression, tenocyte markers, and novel suture patency candidate genes. We identified similar expression patterns in FaceBase-deposited scRNA-seq datasets from cranial sutures. These findings demonstrate shared biological principles for suture establishment, providing further avenues for future development and understanding of maxillofacial interventions.

3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673803

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Esterol O-Aciltransferase , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Humanos , Masculino , Feminino , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína C1 de Niemann-Pick , Criança , Polimorfismo de Nucleotídeo Único , Animais , Camundongos , Fenótipo , Adolescente , Pré-Escolar , Genes Modificadores , Adulto , Alelos , Índice de Gravidade de Doença , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adulto Jovem
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473790

RESUMO

Adrenal myelolipomas (AML) are composed of mature adipose and hematopoietic components. They represent approximately 3 percent of adrenal tumors and are commonly found in patients with congenital adrenal hyperplasia (CAH). CAH provides a unique environment to explore AML pathogenesis. We aimed to evaluate the role of the immune system and hormones that accumulate in poorly controlled CAH in the development of AML. When compared to normal adrenal tissue, CAH-affected adrenal tissue and myelolipomas showed an increased expression of inflammatory cells (CD68, IL2Rbeta), stem cells (CD117) B cells (IRF4), and adipogenic markers (aP2/FABP4, AdipoQ, PPARγ, Leptin, CideA), and immunostaining showed nodular lymphocytic accumulation. Immunohistochemistry staining revealed a higher density of inflammatory cells (CD20, CD3, CD68) in CAH compared to non-CAH myelolipomas. In vitro RNA-sequencing studies using NCI-H295R adrenocortical cells with exogenous exposure to ACTH, testosterone, and 17-hydroxyprogesterone hormones, showed the differential expression of genes involved in cell cycle progression, phosphorylation, and tumorigenesis. Migration of B-lymphocytes was initiated after the hormonal treatment of adrenocortical cells using the Boyden chamber chemotaxis assay, indicating a possible hormonal influence on triggering inflammation and the development of myelolipomas. These findings demonstrate the important role of inflammation and the hormonal milieu in the development of AML in CAH.


Assuntos
Neoplasias das Glândulas Suprarrenais , Hiperplasia Suprarrenal Congênita , Leucemia Mieloide Aguda , Lipoma , Mielolipoma , Humanos , Mielolipoma/patologia , Neoplasias das Glândulas Suprarrenais/genética
5.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38410490

RESUMO

RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.

6.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37292772

RESUMO

Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which constitutes the most common among the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study utilized the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. While prior research had identified upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.

7.
Front Endocrinol (Lausanne) ; 14: 1272939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027204

RESUMO

Introduction: Pediatric obesity has steadily increased in recent decades. Large-scale genome-wide association studies (GWAS) conducted primarily in Eurocentric adult populations have identified approximately 100 loci that predispose to obesity and type II diabetes. GWAS in children and individuals of non-European descent, both disproportionately affected by obesity, are fewer. Rare syndromic and monogenic obesities account for only a small portion of childhood obesity, so understanding the role of other genetic variants and their combinations in heritable obesities is key to developing targeted and personalized therapies. Tight and responsive regulation of the cAMP-dependent protein kinase (PKA) signaling pathway is crucial to maintaining healthy energy metabolism, and mutations in PKA-linked genes represent the most common cause of monogenic obesity. Methods: For this study, we performed targeted exome sequencing of 53 PKA signaling-related genes to identify variants in genomic DNA from a large, ethnically diverse cohort of obese or metabolically challenged youth. Results: We confirmed 49 high-frequency variants, including a novel variant in the PDE11A gene (c.152C>T). Several other variants were associated with metabolic characteristics within ethnic groups. Discussion: We conclude that a PKA pathway-specific variant search led to the identification of several new genetic associations with obesity in an ethnically diverse population.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Infantil , Adulto , Adolescente , Humanos , Criança , Obesidade Infantil/genética , Estudo de Associação Genômica Ampla , Mutação
8.
Nat Commun ; 14(1): 5687, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709732

RESUMO

The terminal differentiation of osteoblasts and subsequent formation of bone marks an important phase in palate development that leads to the separation of the oral and nasal cavities. While the morphogenetic events preceding palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms driving the formation of this bony union of the fusing palate. Through bulk, single-nucleus, and spatially resolved RNA-sequencing analyses of the developing secondary palate, we identify a shift in transcriptional programming between embryonic days 14.5 and 15.5 pinpointing the onset of osteogenesis. We define spatially restricted expression patterns of key osteogenic marker genes that are differentially expressed between these developmental timepoints. Finally, we identify genes in the palate highly expressed by palate nasal epithelial cells, also enriched within palatal osteogenic mesenchymal cells. This investigation provides a relevant framework to advance palate-specific diagnostic and therapeutic biomarker discovery.


Assuntos
Pesquisa Biomédica , Transcriptoma , Transcriptoma/genética , Osteogênese/genética , Perfilação da Expressão Gênica , Células Epiteliais
9.
Front Endocrinol (Lausanne) ; 14: 1166076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388215

RESUMO

Introduction: Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Methods: Following the identification of a loss-of-function variant (p.Arg703Gln) in the peptidylglycine a-amidating monooxygenase (PAM) gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated PA kindreds for PAM variants. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. Results: In germline DNA, we detected seven heterozygous, likely pathogenic missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with growth hormone excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, splicing by minigene assays, and amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs with diagnoses linked to pituitary gland hyperfunction. Conclusion: The identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.


Assuntos
Doenças da Hipófise , Neoplasias Hipofisárias , Criança , Humanos , Variações do Número de Cópias de DNA , Hipófise , Neoplasias Hipofisárias/genética , Oxigenases de Função Mista
10.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333290

RESUMO

The differentiation of osteoblasts and the subsequent formation of bone marks an important terminal phase in palate formation that leads to the separation of the oral and nasal cavities. While the developmental events that precede palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms that lead to the bony union of fusing palatal shelves. Herein, the timeline of osteogenic transcriptional programming is unveiled in the embryonic palate by way of integrated bulk, single-cell, and spatially resolved RNA-seq analyses. We define spatially restricted expression patterns of key marker genes, both regulatory and structural, that are differentially expressed during palatal fusion, including the identification of several novel genes ( Deup1, Dynlrb2, Lrrc23 ) spatially restricted in expression to the palate, providing a relevant framework for future studies that identify new candidate genes for cleft palate anomalies in humans as well as the timing of mammalian embryonic palatal osteogenesis.

11.
medRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711613

RESUMO

Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. Following the identification of a loss-of-function variant (p.Arg703Gln) in the PAM gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated pituitary adenomas kindreds for PAM variants. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. No germline CNVs or somatic single nucleotide variants (SNVs) were identified. We detected seven likely pathogenic heterozygous missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with GH excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or with different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, for splicing by minigene assays, and for amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs to diagnoses linked to pituitary gland hyperfunction. Identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.

12.
Front Physiol ; 14: 1316635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274045

RESUMO

Mouse and human genetic studies indicate key roles of the Wnt10a ligand in odontogenesis. Previous studies have identified effectors and regulators of the Wnt signaling pathway actively expressed during key stages of tooth morphogenesis. However, limitations in multiplexing and spatial resolution hindered a more comprehensive analysis of these signaling molecules. Here, profiling of transcriptomes using fluorescent multiplex in situ hybridization and single-cell RNA-sequencing (scRNA-seq) provide robust insight into the synchronized expression patterns of Wnt10a, Dkk1, and Sost simultaneously during tooth development. First, we identified Wnt10a transcripts restricted to the epithelium at the stage of tooth bud morphogenesis, contrasting that of Sost and Dkk1 localization to the dental mesenchyme. By embryonic day 15.5 (E15.5), a marked shift of Wnt10a expression from dental epithelium to mesenchyme was noted, while Sost and Dkk1 expression remained enriched in the mesenchyme. By postnatal day 0 (P0), co-localization patterns of Wnt10a, Dkk1, and Sost were observed in both terminally differentiating and secreting odontoblasts of molars and incisors. Interestingly, Wnt10a exhibited robust expression in fully differentiated ameloblasts at the developing cusp tip of both molars and incisors, an observation not previously noted in prior studies. At P7 and 14, after the mineralization of dentin and enamel, Wnt10a expression was limited to odontoblasts. Meanwhile, Wnt modulators showed reduced or absent signals in molars. In contrast, strong signals persisted in ameloblasts (for Wnt10a) and odontoblasts (for Wnt10a, Sost, and Dkk1) towards the proximal end of incisors, near the cervical loop. Our scRNA-seq analysis used CellChat to further contextualize Wnt pathway-mediated communication between cells by examining ligand-receptor interactions among different clusters. The co-localization pattern of Wnt10a, Dkk1, and Sost in both terminally differentiating and secreting odontoblasts of molars and incisors potentially signifies the crucial ligand-modulator interaction along the gradient of cytodifferentiation starting from each cusp tip towards the apical region. These data provide cell type-specific insight into the role of Wnt ligands and mediators during epithelial-mesenchymal interactions in odontogenesis.

13.
Sci Rep ; 12(1): 22628, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587060

RESUMO

Locusts depend upon their sense of smell and provide useful models for understanding olfaction. Extending this understanding requires knowledge of the molecular and structural organization of the olfactory system. Odor sensing begins with olfactory receptor neurons (ORNs), which express odorant receptors (ORs). In insects, ORNs are housed, in varying numbers, in olfactory sensilla. Because the organization of ORs within sensilla affects their function, it is essential to identify the ORs they contain. Here, using RNA sequencing, we identified 179 putative ORs in the transcriptomes of the two main olfactory organs, antenna and palp, of the locust Schistocerca americana. Quantitative expression analysis showed most putative ORs (140) are expressed in antennae while only 31 are in the palps. Further, our analysis identified one OR detected only in the palps and seven ORs that are expressed differentially by sex. An in situ analysis of OR expression suggested ORs are organized in non-random combinations within antennal sensilla. A phylogenetic comparison of OR predicted protein sequences revealed homologous relationships among two other Acrididae species. Our results provide a foundation for understanding the organization of the first stage of the olfactory system in S. americana, a well-studied model for olfactory processing.


Assuntos
Gafanhotos , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Filogenia , Neurônios Receptores Olfatórios/metabolismo , Gafanhotos/genética , Gafanhotos/metabolismo , Sensilas/metabolismo , Olfato/genética , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
14.
Phage (New Rochelle) ; 3(3): 141-152, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196375

RESUMO

Background: : Although many bacteriophage T4 early genes are nonessential with unknown functions, they are believed to aid in the takeover of the Escherichia coli host. Understanding the functions of these genes could be helpful to develop novel antibacterial strategies. MotB, encoded by a previously uncharacterized T4 early gene, is a DNA-binding protein that compacts the host nucleoid and alters host gene expression. Methods: : MotB structure was predicted by AlphaFold 2. RNA-seq and mass spectrometry (MS) analyses were performed to determine RNA and protein changes when motB was overexpressed in E. coli BL21(DE3) ±5 min T4 infection. Results: : MotB structure is predicted to be a two-domain protein with N-terminal Kyprides-Onzonis-Woese and C-terminal oligonucleotide/oligosaccharide-fold domains. In E. coli B, motB overexpression during infection does not affect T4 RNAs, but affects the expression of host genes, including the downregulation of 21 of the 84 chargeable host tRNAs. Many of these tRNAs are used less frequently by T4 or have a counterpart encoded within the T4 genome. The MS analyses indicate that the levels of multiple T4 proteins are changed by motB overexpression. Conclusion: : Our results suggest that in this E. coli B host, motB is involved in establishing a more favorable tRNA pool for the phage during infection.

15.
Nucleic Acids Res ; 50(16): 9534-9547, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979957

RESUMO

La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.


Assuntos
Autoantígenos , Ribonucleoproteínas , Ribonucleoproteínas/metabolismo , Autoantígenos/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Poli A/metabolismo , RNA/genética , RNA/metabolismo , Ligação Proteica
16.
Commun Biol ; 5(1): 810, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962146

RESUMO

There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A , Influenza Humana , Antivirais/farmacologia , Antivirais/uso terapêutico , Quimiocinas , Epitélio , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/tratamento farmacológico , Pulmão , SARS-CoV-2 , Replicação Viral
17.
Elife ; 112022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611941

RESUMO

MAF1, a key repressor of RNA polymerase (pol) III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show that MAF1 plays a critical role in regulating osteoblast differentiation and bone mass. Global deletion of MAF1 (Maf1-/- mice) produced a high bone mass phenotype. However, osteoblasts isolated from Maf1-/- mice showed reduced osteoblastogenesis ex vivo. Therefore, we determined the phenotype of mice overexpressing MAF1 in cells from the mesenchymal lineage (Prx1-Cre;LSL-MAF1 mice). These mice showed increased bone mass. Ex vivo, cells from these mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to confounding effects from the global absence of MAF1. MAF1 overexpression promoted osteoblast differentiation of ST2 cells while MAF1 downregulation inhibited differentiation, indicating MAF1 enhances osteoblast formation. However, other perturbations used to repress RNA pol III transcription, inhibited osteoblast differentiation. However, decreasing RNA pol III transcription through these perturbations enhanced adipogenesis in ST2 cells. RNA-seq analyzed the basis for these opposing actions on osteoblast differentiation. The different modalities used to perturb RNA pol III transcription resulted in distinct gene expression changes, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 induced genes known to promote osteoblast differentiation. Furthermore, genes that are induced during osteoblast differentiation displayed codon bias. Together, these results reveal a novel role for MAF1 and RNA pol III-mediated transcription in osteoblast fate determination, differentiation, and bone mass regulation.


Assuntos
RNA Polimerase III , Proteínas Repressoras , Animais , Proteína 1 Semelhante a Receptor de Interleucina-1 , Camundongos , Prolapso da Valva Mitral , Miopia , RNA , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Dermatopatias , Transcrição Gênica
18.
Angiogenesis ; 25(3): 411-434, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35320450

RESUMO

The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.


Assuntos
Peixe-Zebra , Proteína rhoA de Ligação ao GTP , Animais , Animais Geneticamente Modificados , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Front Endocrinol (Lausanne) ; 12: 730947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616364

RESUMO

Introduction: Adrenocortical hyperplasia and adrenal rest tumor (ART) formation are common in congenital adrenal hyperplasia (CAH). Although driven by excessive corticotropin, much is unknown regarding the morphology and transformation of these tissues. Our study objective was to characterize CAH-affected adrenals and ART and compare with control adrenal and gonadal tissues. Patients/Methods: CAH adrenals, ART and control tissues were analyzed by histology, immunohistochemistry, and transcriptome sequencing. We investigated protein expression of the ACTH receptor (MC2R), steroidogenic (CYP11B2, CYP11B1, CYB5A) and immune (CD20, CD3, CD68) biomarkers, and delta-like 1 homolog (DLK1), a membrane bound protein broadly expressed in fetal and many endocrine cells. RNA was isolated and gene expression was analyzed by RNA sequencing (RNA-seq) followed by principle component, and unsupervised clustering analyses. Results: Based on immunohistochemistry, CAH adrenals and ART demonstrated increased zona reticularis (ZR)-like CYB5A expression, compared to CYP11B1, and CYP11B2, markers of zona fasciculata and zona glomerulosa respectively. CYP11B2 was mostly absent in CAH adrenals and absent in ART. DLK1 was present in CAH adrenal, ART, and also control adrenal and testis, but was absent in control ovary. Increased expression of adrenocortical marker MC2R, was observed in CAH adrenals compared to control adrenal. Unlike control tissues, significant nodular lymphocytic infiltration was observed in CAH adrenals and ART, with CD20 (B-cell), CD3 (T-cell) and CD68 (macrophage/monocyte) markers of inflammation. RNA-seq data revealed co-expression of adrenal MC2R, and testis-specific INSL3, HSD17B3 in testicular ART indicating the presence of both gonadal and adrenal features, and high expression of DLK1 in ART, CAH adrenals and control adrenal. Principal component analysis indicated that the ART transcriptome was more similar to CAH adrenals and least similar to control testis tissue. Conclusions: CAH-affected adrenal glands and ART have similar expression profiles and morphology, demonstrating increased CYB5A with ZR characteristics and lymphocytic infiltration, suggesting a common origin that is similarly affected by the abnormal hormonal milieu. Immune system modulators may play a role in tumor formation of CAH.


Assuntos
Hiperplasia Suprarrenal Congênita/complicações , Tumor de Resto Suprarrenal/patologia , Hiperfunção Adrenocortical/patologia , Biomarcadores/análise , Citocromos b5/metabolismo , Tumor de Resto Suprarrenal/etiologia , Tumor de Resto Suprarrenal/metabolismo , Hiperfunção Adrenocortical/etiologia , Hiperfunção Adrenocortical/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Citocromos b5/genética , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Prognóstico , Transcriptoma
20.
Nucleic Acids Res ; 49(16): 9229-9245, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34365505

RESUMO

Nucleoid Associated Proteins (NAPs) organize the bacterial chromosome within the nucleoid. The interaction of the NAP H-NS with DNA also represses specific host and xenogeneic genes. Previously, we showed that the bacteriophage T4 early protein MotB binds to DNA, co-purifies with H-NS/DNA, and improves phage fitness. Here we demonstrate using atomic force microscopy that MotB compacts the DNA with multiple MotB proteins at the center of the complex. These complexes differ from those observed with H-NS and other NAPs, but resemble those formed by the NAP-like proteins CbpA/Dps and yeast condensin. Fluorescent microscopy indicates that expression of motB in vivo, at levels like that during T4 infection, yields a significantly compacted nucleoid containing MotB and H-NS. motB overexpression dysregulates hundreds of host genes; ∼70% are within the hns regulon. In infected cells overexpressing motB, 33 T4 late genes are expressed early, and the T4 early gene repEB, involved in replication initiation, is up ∼5-fold. We postulate that MotB represents a phage-encoded NAP that aids infection in a previously unrecognized way. We speculate that MotB-induced compaction may generate more room for T4 replication/assembly and/or leads to beneficial global changes in host gene expression, including derepression of much of the hns regulon.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago T4/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Viral/química , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Escherichia coli , Interações Hospedeiro-Patógeno , Regulon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA