Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891076

RESUMO

Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Mesencéfalo , Proteômica , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteômica/métodos , Neurônios Dopaminérgicos/metabolismo , Animais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Mesencéfalo/metabolismo , Humanos , Canais de Cálcio Tipo L/metabolismo , Camundongos , Substância Negra/metabolismo
2.
Cells ; 12(5)2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36899886

RESUMO

V-ATPase is an important factor in synaptic vesicle acidification and is implicated in synaptic transmission. Rotation in the extra-membranous V1 sector drives proton transfer through the membrane-embedded multi-subunit V0 sector of the V-ATPase. Intra-vesicular protons are then used to drive neurotransmitter uptake by synaptic vesicles. V0a and V0c, two membrane subunits of the V0 sector, have been shown to interact with SNARE proteins, and their photo-inactivation rapidly impairs synaptic transmission. V0d, a soluble subunit of the V0 sector strongly interacts with its membrane-embedded subunits and is crucial for the canonic proton transfer activity of the V-ATPase. Our investigations show that the loop 1.2 of V0c interacts with complexin, a major partner of the SNARE machinery and that V0d1 binding to V0c inhibits this interaction, as well as V0c association with SNARE complex. The injection of recombinant V0d1 in rat superior cervical ganglion neurons rapidly reduced neurotransmission. In chromaffin cells, V0d1 overexpression and V0c silencing modified in a comparable manner several parameters of unitary exocytotic events. Our data suggest that V0c subunit promotes exocytosis via interactions with complexin and SNAREs and that this activity can be antagonized by exogenous V0d.


Assuntos
Proteínas SNARE , ATPases Vacuolares Próton-Translocadoras , Ratos , Animais , Proteínas SNARE/metabolismo , Prótons , Vesículas Sinápticas/metabolismo , Fusão de Membrana , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(36): 18098-18108, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431523

RESUMO

Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.


Assuntos
Toxinas Botulínicas Tipo A , Gangliosídeos , Sinaptotagmina I , Animais , Sítios de Ligação , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Gangliosídeos/química , Gangliosídeos/farmacologia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Ratos , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/química , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo
4.
Neuron ; 67(2): 268-79, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20670834

RESUMO

Acidification of synaptic vesicles by the vacuolar proton ATPase is essential for loading with neurotransmitter. Debated findings have suggested that V-ATPase membrane domain (V0) also contributes to Ca(2+)-dependent transmitter release via a direct role in vesicle membrane fusion, but the underlying mechanisms remain obscure. We now report a direct interaction between V0 c-subunit and the v-SNARE synaptobrevin, constituting a molecular link between the V-ATPase and SNARE-mediated fusion. Interaction domains were mapped to the membrane-proximal domain of VAMP2 and the cytosolic 3.4 loop of c-subunit. Acute perturbation of this interaction with c-subunit 3.4 loop peptides did not affect synaptic vesicle proton pump activity, but induced a substantial decrease in neurotransmitter release probability, inhibiting glutamatergic as well as cholinergic transmission in cortical slices and cultured sympathetic neurons, respectively. Thus, V-ATPase may ensure two independent functions: proton transport by a fully assembled V-ATPase and a role in SNARE-dependent exocytosis by the V0 sector.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Lipossomos/metabolismo , Macrolídeos/farmacologia , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Neurotransmissores/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteolipídeos/metabolismo , Ratos , Ratos Wistar , Proteínas SNARE/metabolismo , Alinhamento de Sequência/métodos , Técnicas do Sistema de Duplo-Híbrido , ATPases Vacuolares Próton-Translocadoras/química , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
5.
J Biol Chem ; 285(31): 23665-75, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20519509

RESUMO

Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Regulação da Expressão Gênica , Fusão de Membrana , Proteínas SNARE/química , Animais , Cálcio/química , Bovinos , Membrana Celular/metabolismo , Exocitose , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Lipossomos/química , Sinaptotagmina I/química , Toxina Tetânica/química
6.
Proc Natl Acad Sci U S A ; 107(8): 3517-21, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133592

RESUMO

Almost all known intracellular fusion reactions are driven by formation of trans-SNARE complexes through pairing of vesicle-associated v-SNAREs with complementary t-SNAREs on target membranes. However, the number of SNARE complexes required for fusion is unknown, and there is controversy about whether additional proteins are required to explain the fast fusion which can occur in cells. Here we show that single vesicles containing the synaptic/exocytic v-SNAREs VAMP/synaptobrevin fuse rapidly with planar, supported bilayers containing the synaptic/exocytic t-SNAREs syntaxin-SNAP25. Fusion rates decreased dramatically when the number of externally oriented v-SNAREs per vesicle was reduced below 5-10, directly establishing this as the minimum number required for rapid fusion. Docking-to-fusion delay time distributions were consistent with a requirement that 5-11 t-SNAREs be recruited to achieve fusion, closely matching the v-SNARE requirement.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Fusão de Membrana , Proteínas SNARE/metabolismo , Animais , Humanos , Proteínas SNARE/química , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Lipossomas Unilamelares/química
7.
Dev Biol ; 294(1): 181-91, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16580661

RESUMO

The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas do Olho/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fosfoproteínas/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Reguladores de Proteínas de Ligação ao GTP , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Mutação , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 101(6): 1578-83, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-14757830

RESUMO

Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) protein interactions at the synaptic vesicle/plasma membrane interface play an essential role in neurotransmitter release. The membrane-proximal region (amino acids 77-90) of the v-SNARE vesicle-associated membrane protein 2 (VAMP 2, synaptobrevin) binds acidic phospholipids or Ca(2+)/calmodulin in a mutually exclusive manner, processes that are required for Ca(2+)-dependent exocytosis. To address the mechanisms involved, we asked whether this region of VAMP can interact with cis (outer vesicle leaflet) and/or trans (inner plasma membrane leaflet) lipids. To evaluate cis lipid binding, recombinant VAMP was reconstituted into liposomes and accessibility to site-directed antibodies was probed by surface plasmon resonance. Data indicated that the membrane-proximal domain of VAMP dips into the cis lipid bilayer, sequestering epitopes between the tetanus toxin cleavage site and the membrane anchor. These epitopes were unmasked by VAMP double mutation W89A, W90A, which abolishes lipid interactions. To evaluate trans lipid binding, VAMP was reconstituted in cis liposomes, which were then immobilized on beads. The ability of VAMP to capture protein-free (3)H-labeled trans liposomes was then measured. When cis lipid interactions were eliminated by omitting negatively charged lipids, trans lipid binding to VAMP was revealed. In contrast, when cis and trans liposomes both contained acidic headgroups (i.e., approximating physiological conditions), cis lipid interactions totally occluded trans lipid binding. In these conditions Ca(2+)/calmodulin displaced cis inhibition, transferring the lipid-binding domain of VAMP from the cis to the trans bilayer. Our results suggest that calmodulin acts as a unidirectional Ca(2+)-activated shuttle that docks the juxtamembrane portion of the v-SNARE in the target membrane to prepare fusion.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Bicamadas Lipídicas , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas R-SNARE , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
9.
Biol Cell ; 95(7): 459-64, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14597264

RESUMO

Trans SNARE complex assembly is an essential step in Ca2+-dependent membrane fusion, although the SNARE proteins do not bind Ca2+ ions. Studies to evaluate how the Ca2+sensor protein calmodulin might regulate this process led to the identification of a consensus calmodulin binding motif in the v-SNARE VAMP2. This sequence (residues 77-90) is situated precisely C-terminal to the tetanus toxin (TeNT) and botulinum B toxin cleavage site (76Q-F77) close to the transmembrane anchor. The same domain also binds acidic phospholipids and Ca2+/calmodulin or lipid binding are mutually exclusive. Directed mutagenesis of basic or hydrophobic residues within this motif reduced interactions with both Ca2+/calmodulin and phospholipids to a similar extent. The effects of these mutations on Ca2+-dependent exocytosis was explored using an hGH release assay in permeabilized pheochromocytoma PC12 cells. Treatment of cells with tetanus toxin (TeNT), which cleaves endogenous VAMP, abolished secretion. Secretion could be re-established by transfecting TeNT-resistant VAMP with mutations (Q76V,F77W) in the cleavage site. However rescue of exocytosis was abolished when additional mutations (K83A,K87V or W89A,W90A) were introduced that inhibited calmodulin and phospholipid binding to VAMP. Thus calmodulin and/or phospholipid binding to the membrane proximal region of VAMP is required for Ca2+-dependent exocytosis. We speculate that interactions between cis phospholipids at the vesicle surface and the membrane proximal region of VAMP inhibits SNARE complex assembly. Displacement of these interactions by Ca2+/calmodulin may promote SNARE complex assembly and lead to trans interactions between the membrane proximal region of VAMP and phospholipids in the plasma membrane.


Assuntos
Calmodulina/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/metabolismo , Domínio Catalítico , Células Cromafins/enzimologia , Sequência Consenso , Exocitose , Fusão de Membrana , Proteínas de Membrana/genética , Dados de Sequência Molecular , Células PC12 , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas R-SNARE , Ratos
10.
EMBO J ; 21(15): 3970-9, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145198

RESUMO

Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.


Assuntos
Calmodulina/fisiologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Fosfolipídeos/fisiologia , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Calmodulina/química , Bovinos , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Hormônio do Crescimento Humano/metabolismo , Humanos , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Metaloendopeptidases/farmacologia , Microinjeções , Dados de Sequência Molecular , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Estrutura Terciária de Proteína , Proteínas R-SNARE , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Sesterterpenos , Ressonância de Plasmônio de Superfície , Sintaxina 1 , Terpenos/farmacologia , Toxina Tetânica/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA