Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0248381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339441

RESUMO

Biological phenomena induced by terahertz (THz) irradiation are described in recent reports, but underlying mechanisms, structural and dynamical change of specific molecules are still unclear. In this paper, we performed time-lapse morphological analysis of human cells and found that THz irradiation halts cell division at cytokinesis. At the end of cytokinesis, the contractile ring, which consists of filamentous actin (F-actin), needs to disappear; however, it remained for 1 hour under THz irradiation. Induction of the functional structures of F-actin was also observed in interphase cells. Similar phenomena were also observed under chemical treatment (jasplakinolide), indicating that THz irradiation assists actin polymerization. We previously reported that THz irradiation enhances the polymerization of purified actin in vitro; our current work shows that it increases cytoplasmic F-actin in vivo. Thus, we identified one of the key biomechanisms affected by THz waves.


Assuntos
Actinas/efeitos da radiação , Divisão Celular/efeitos da radiação , Radiação Terahertz , Actinas/metabolismo , Citocinese/efeitos da radiação , Células HeLa/efeitos da radiação , Humanos , Interfase/efeitos da radiação , Microscopia de Fluorescência , Análise de Célula Única
2.
Biomed Opt Express ; 11(9): 5341-5351, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014618

RESUMO

On using the far-infrared radiation system, whether the irradiation effect is thermal or non-thermal is controversial. We irradiated amyloid peptides that are causal factors for amyloidosis by using a submillimeter wave from 420 GHz gyrotron. Fluorescence reagent assay, optical and electron microscopies, and synchrotron-radiation infrared microscopy showed that the irradiation increased the fibrous conformation of peptides at room temperature for 30 min. The temperature increase on the sample was only below 5 K, and a simple heating up to 318 K hardly induced the fibril formation. Therefore, the amyloid aggregation was driven by the far-infrared radiation with little thermal effect.

3.
Rev Sci Instrum ; 90(3): 034703, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927777

RESUMO

The results of the development of compact radiation module based on a 300 GHz continuous-wave (CW) clinotron are presented. The clinotron oscillator is proposed as a part of the module designated for high-field dynamic nuclear polarization (DNP) systems for applications in nuclear magnetic resonance (NMR) spectroscopy. The simulation results of clinotron radiation spectra considering the influence of accelerating voltage pulsations are compared with the requirements for THz radiation linewidth for efficient NMR signal enhancement. Based on the simulations, the 300 GHz CW clinotron oscillator was developed and tested together with the high-voltage (HV) power supply, providing the output voltage stability better than 20 ppm. The frequency stability of 33 ppm was observed during the clinotron operation within several hours. The spectral linewidth is better than 8 MHz at 300 GHz that satisfies the requirements for DNP-NMR spectroscopy.

4.
Sci Rep ; 8(1): 9990, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968762

RESUMO

Polymerization of monomeric actin into filaments has pivotal roles in cell motility, growth, differentiation, and gene expression. Therefore, techniques of manipulating actin polymerization, including actin-binding chemicals, have been developed for understanding and regulating multiple biological functions. Here, we demonstrate that irradiation with terahertz (THz) waves is a novel method of modulating actin polymerization. When actin polymerization reaction is performed under irradiation with 0.46 THz waves generated by a Gyrotron, actin polymerization was observed to be activated by monitoring the fluorescence of pyrene actin fluorophores. We also observed the number of actin filaments under a fluorescence microscope using the polymerized actin probe SiR-actin. The number of actin filaments was increased by 3.5-fold after THz irradiation for 20 min. When the THz irradiation was applied to a steady-state actin solution, in which elongation and depolymerization of actin filaments were equilibrated, increased actin polymerization was observed, suggesting that the THz irradiation activates actin polymerization, at least in the elongation process. These results suggest that THz waves could be applied for manipulating biomolecules and cells.


Assuntos
Actinas/metabolismo , Actinas/efeitos da radiação , Polimerização/efeitos da radiação , Citoesqueleto de Actina/metabolismo , Actinas/fisiologia , Animais , Movimento Celular , Cinética , Microscopia de Fluorescência , Músculos/metabolismo , Ligação Proteica , Coelhos , Radiação Terahertz
5.
ACS Nano ; 11(12): 12358-12364, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29099586

RESUMO

A simple and robust approach to visualization of continuous wave terahertz (CW-THz) light would open up opportunities to couple physical phenomena that occur at fundamentally different energy scales. Here we demonstrate how nanoscale cages of Ca12Al14O33 crystal enable conversion of CW-THz radiation to visible light. These crystallographic cages are partially occupied with weakly bonded oxygen ions and give rise to a narrow conduction band that can be populated with localized, yet mobile electrons. CW-THz light excites a nearly stand-alone rattling motion of the encaged oxygen species, which promotes electron transfer from them to the neighboring vacant cages. When the power of CW-THz light reaches tens of watts, the coupling between forced rattling in the confined space, electronic excitation and ionization of oxygen species, and corresponding recombination processes result in emission of bright visible light.

6.
Rev Sci Instrum ; 88(9): 094708, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964246

RESUMO

We present the first experimental results of the study on a novel second harmonic THz-band double-beam gyrotron. The tube has demonstrated a stable single-mode operation with output parameters that are appropriate for the next-generation 1.2 GHz dynamic nuclear polarization-nuclear magnetic resonance spectroscopy. Besides the design mode (TE8,5), a series of other fundamental and second harmonic modes have been excited. This makes the new gyrotron a versatile radiation source, which can be used also in other applications of the high-power science and technologies.

7.
J Magn Reson ; 264: 107-115, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26920836

RESUMO

Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0<9T) and temperatures (T>90K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼ 100K and ∼ 30K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.

8.
J Magn Reson ; 225: 1-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23079589

RESUMO

We describe a (1)H polarization enhancement via dynamic nuclear polarization (DNP) at very low sample temperature T≈30 K under magic-angle spinning (MAS) conditions for sensitivity-enhanced solid-state NMR measurement. Experiments were conducted at a high external field strength of 14.1 T. For MAS DNP experiments at T<<90 K, a new probe system using cold helium gas for both sample-cooling and -spinning was developed. The novel system can sustain a low sample temperature between 30 and 90K for a period of time >10 h under MAS at ν(R)≈3 kHz with liquid He consumption of ≈6 L/h. As a microwave source, we employed a high-power, continuously frequency-tunable gyrotron. At T≈34 K, (1)H DNP enhancement factors of 47 and 23 were observed with and without MAS, respectively. On the basis of these observations, a discussion on the total NMR sensitivity that takes into account the effect of sample temperature and external field strength used in DNP experiments is presented. It was determined that the use of low sample temperature and high external field is generally rewarding for the total sensitivity, in spite of the slower polarization buildup at lower temperature and lower DNP efficiency at higher field. These findings highlight the potential of the current continuous-wave DNP technique also at very high field conditions suitable to analyze large and complex systems, such as biological macromolecules.

9.
Phys Rev Lett ; 109(15): 155001, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102316

RESUMO

Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

10.
J Magn Reson ; 215: 1-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22218011

RESUMO

A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Bacteriorodopsinas/química , Óxidos N-Cíclicos/química , Campos Eletromagnéticos , Desenho de Equipamento , Glucose/química , Glicina/química , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Distribuição Normal , Politetrafluoretileno , Propanóis/química , Ondas de Rádio , Temperatura , Ureia/química
11.
Phys Chem Chem Phys ; 12(22): 5799-803, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20518128

RESUMO

Instrumentation for high-field dynamic nuclear polarization (DNP) at 14.1 T was developed to enhance the nuclear polarization for NMR of solids. The gyrotron generated 394.5 GHz submillimeter (sub-mm) wave with a power of 40 W in the second harmonic TE(0,6) mode. The sub-mm wave with a power of 0.5-3 W was transmitted to the sample in a low-temperature DNP-NMR probe with a smooth-wall circular waveguide system. The (1)H polarization enhancement factor of up to about 10 was observed for a (13)C-labeled compound with nitroxyl biradical TOTAPOL. The DNP enhancement was confirmed by the static magnetic field dependence of the NMR signal amplitude at 90 K. Improvements of the high-field DNP experiments are discussed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono/química , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância Magnética/instrumentação , Propanóis/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA