Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 103(3): 395-411.e5, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201122

RESUMO

Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/normas , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Encéfalo/citologia , Biologia Computacional/métodos , Humanos , Internet , Redes Neurais de Computação , Sistemas On-Line
2.
Artigo em Inglês | MEDLINE | ID: mdl-30201843

RESUMO

Geppetto is an open-source platform that provides generic middleware infrastructure for building both online and desktop tools for visualizing neuroscience models and data and managing simulations. Geppetto underpins a number of neuroscience applications, including Open Source Brain (OSB), Virtual Fly Brain (VFB), NEURON-UI and NetPyNE-UI. OSB is used by researchers to create and visualize computational neuroscience models described in NeuroML and simulate them through the browser. VFB is the reference hub for Drosophila melanogaster neural anatomy and imaging data including neuropil, segmented neurons, microscopy stacks and gene expression pattern data. Geppetto is also being used to build a new user interface for NEURON, a widely used neuronal simulation environment, and for NetPyNE, a Python package for network modelling using NEURON. Geppetto defines domain agnostic abstractions used by all these applications to represent their models and data and offers a set of modules and components to integrate, visualize and control simulations in a highly accessible way. The platform comprises a backend which can connect to external data sources, model repositories and simulators together with a highly customizable frontend.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma/métodos , Drosophila melanogaster/fisiologia , Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso , Neurociências/métodos , Animais , Software
3.
Artigo em Inglês | MEDLINE | ID: mdl-30201845

RESUMO

The adoption of powerful software tools and computational methods from the software industry by the scientific research community has resulted in a renewed interest in integrative, large-scale biological simulations. These typically involve the development of computational platforms to combine diverse, process-specific models into a coherent whole. The OpenWorm Foundation is an independent research organization working towards an integrative simulation of the nematode Caenorhabditis elegans, with the aim of providing a powerful new tool to understand how the organism's behaviour arises from its fundamental biology. In this perspective, we give an overview of the history and philosophy of OpenWorm, descriptions of the constituent sub-projects and corresponding open-science management practices, and discuss current achievements of the project and future directions.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma/métodos , Modelos Biológicos , Animais , Conectoma/instrumentação
4.
Front Comput Neurosci ; 8: 137, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25404913

RESUMO

OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA