Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cosmet Investig Dermatol ; 13: 215-232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210602

RESUMO

Human skin demonstrates a striking variation in tone and color that is evident among multiple demographic populations. Such characteristics are determined predominantly by the expression of the genes controlling the quantity and quality of melanin, which can alter significantly due to the presence of small nucleotide polymorphism affecting various steps of the melanogenesis process and generally linked to the lighter skin phenotypes. Genetically determined, constitutive skin color is additionally complemented by the facultative melanogenesis and tanning responses; with high levels of melanin and melanogenic factors broadly recognized to have a protective effect against the UVR-induced molecular damage in darker skin. Long-term sun exposure, together with a genetic makeup responsible for the ability to tan or the activity of constitutive melanogenic factors, triggers defects in pigmentation across all ethnic skin types. However, sun exposure also has well documented beneficial effects that manifest at both skin homeostasis and the systemic level, such as synthesis of vitamin D, which is thought to be less efficient in the presence of high levels of melanin or potentially linked to the polymorphism in the genes responsible for skin darkening triggered by UVR. In this review, we discuss melanogenesis in a context of constitutive pigmentation, defined by gene polymorphism in ethnic skin types, and facultative pigmentation that is not only associated with the capacity to protect the skin against photo-damage but could also have an impact on vitamin D synthesis through gene polymorphism. Modulating the activities of melanogenic genes, with the focus on the markers specifically altered by polymorphism combined with differential requirements of sun exposure in ethnic skin types, could enhance the applications of already existing skin brightening factors and provide a novel approach toward improved skin tone and health in personalized skincare.

2.
Open Biol ; 9(12): 190208, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31847786

RESUMO

Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.


Assuntos
Produtos Biológicos/uso terapêutico , Dano ao DNA , Espécies Reativas de Oxigênio/efeitos adversos , Transdução de Sinais , Pele , Raios Ultravioleta/efeitos adversos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação
3.
Clin Cosmet Investig Dermatol ; 11: 297-307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928140

RESUMO

Human skin is a stratified endocrine organ with primary roles in protection against detrimental biochemical and biophysical factors in the environment. Environmental stress causes gradual accumulation of the macromolecular damage and clinical manifestations consistent with chronic inflammatory conditions and premature aging of the skin. Structural proteins of cell nucleus, the nuclear lamins and lamina-associated proteins, play an important role in the regulation of a number of signal transduction pathways associated with stress. The nuclear lamina proteins have been implicated in a number of degenerative disorders with frequent clinical manifestations of the skin conditions related to premature aging. Analysis of the molecular signatures in response of the skin to a range of damaging factors not only points at the likely involvement of the nuclear lamina in transmission of the signals between the environment and cell nucleus but also defines skin's sensitivity to stress, and therefore the capacities to counteract external damage in aging.

4.
Clin Cosmet Investig Dermatol ; 11: 161-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692619

RESUMO

Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA