Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

3.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790557

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cells dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cells ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulates lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation loose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo . Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

4.
Nucleic Acids Res ; 50(21): 12425-12443, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36447390

RESUMO

Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem-loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA. Here, we reveal how H2AC18 captures the two human pre-mRNA processing complexes in a mutually exclusive mode by overlapping a canonical PAS (AAUAAA) sequence element with a HDE. Disruption of the PAS sequence on H2AC18 pre-mRNA prevents recruitment of the canonical complex in vitro, without affecting the histone machinery. This shows how the relative position of cis-acting elements in histone pre-mRNAs allows the selective recruitment of distinct human pre-mRNA complexes, thereby expanding the capability to regulate 3' processing and polyadenylation.


Assuntos
Histonas , Precursores de RNA , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Histonas/genética , Histonas/metabolismo , Poliadenilação , Fatores de Poliadenilação e Clivagem de mRNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nature ; 606(7916): 1015-1020, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35545671

RESUMO

The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+-taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3 (HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP 'gated-pore' transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP.


Assuntos
Ácidos e Sais Biliares , Microscopia Crioeletrônica , Fígado , Transportadores de Ânions Orgânicos Dependentes de Sódio , Sódio , Simportadores , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Vírus da Hepatite B/metabolismo , Vírus Delta da Hepatite/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/ultraestrutura , Conformação Proteica , Receptores Virais/metabolismo , Anticorpos de Domínio Único , Sódio/metabolismo , Simportadores/química , Simportadores/metabolismo , Simportadores/ultraestrutura , Internalização do Vírus
6.
Nature ; 602(7898): 695-700, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173330

RESUMO

Aromatic residues cluster in the core of folded proteins, where they stabilize the structure through multiple interactions. Nuclear magnetic resonance (NMR) studies in the 1970s showed that aromatic side chains can undergo ring flips-that is, 180° rotations-despite their role in maintaining the protein fold1-3. It was suggested that large-scale 'breathing' motions of the surrounding protein environment would be necessary to accommodate these ring flipping events1. However, the structural details of these motions have remained unclear. Here we uncover the structural rearrangements that accompany ring flipping of a buried tyrosine residue in an SH3 domain. Using NMR, we show that the tyrosine side chain flips to a low-populated, minor state and, through a proteome-wide sequence analysis, we design mutants that stabilize this state, which allows us to capture its high-resolution structure by X-ray crystallography. A void volume is generated around the tyrosine ring during the structural transition between the major and minor state, and this allows fast flipping to take place. Our results provide structural insights into the protein breathing motions that are associated with ring flipping. More generally, our study has implications for protein design and structure prediction by showing how the local protein environment influences amino acid side chain conformations and vice versa.


Assuntos
Proteínas , Tirosina , Cristalografia por Raios X , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Tirosina/química , Tirosina/metabolismo , Domínios de Homologia de src
7.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406561

RESUMO

UNLABELLED: The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy-based on the construction of a lectin-glycan interaction (LGI) network-to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. IMPORTANCE: Microbial pathogens may express a wide range of carbohydrate-specific adhesion proteins that mediate adherence to host tissues. Pathogen attachment to host cells is achieved through the binding of these lectin-like adhesins to glycans on human glycoproteins. In only a few cases have the human receptors of pathogenic adhesins been described. We developed a new strategy to predict these interacting receptors. Therefore, we developed a novel LGI network that would allow the mapping of potential adhesin binding receptors in the host with prioritization, based on the experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins (bacterial uroepithelial FimH from E. coli and fungal Epa and Als adhesins from C. glabrata and C. albicans) were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with human-pathogenic viruses and to discover whether FimH adhesin has anti-HIV activity.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas Fúngicas/metabolismo , Receptores de Superfície Celular/análise , Linhagem Celular , Humanos , Lectinas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica
8.
mBio ; 6(2)2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25873380

RESUMO

UNLABELLED: We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca(2+) takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca(2+). These results unify the generally accepted lectin hypothesis with the historically first-proposed "Ca(2+)-bridge" hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. IMPORTANCE: Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.


Assuntos
Adesão Celular , Conjugação Genética , Floculação , Lectinas de Ligação a Manose/metabolismo , Viabilidade Microbiana , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Perfilação da Expressão Gênica , Lectinas de Ligação a Manose/química , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/análise , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência de DNA
9.
J Am Chem Soc ; 137(1): 154-7, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25525674

RESUMO

We demonstrate the use of dip-pen nanolithography (DPN) to crystallize proteins on surface-localized functionalized lipid layer arrays. DOPC lipid layers, containing small amounts of biotin-DOPE lipid molecules, were printed on glass substrates and evaluated in vapor diffusion and batch crystallization screening setups, where streptavidin was used as a model protein for crystallization. Independently of the crystallization system used and the geometry of the lipid layers, nucleation of streptavidin crystals occurred specifically on the DPN-printed biotinylated structures. Protein crystallization on lipid array patches is also demonstrated in a microfluidic chip, which opens the way toward high-throughput screening to find suitable nucleation and crystal growth conditions. The results demonstrate the use of DPN in directing and inducing protein crystallization on specific surface locations.


Assuntos
Cristalização/métodos , Nanotecnologia , Estreptavidina/química , 1,2-Dipalmitoilfosfatidilcolina/química , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Tamanho da Partícula , Propriedades de Superfície
10.
Glycobiology ; 24(12): 1312-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25049238

RESUMO

The N-terminal domain of the Epa1p adhesin from Candida glabrata (N-Epa1p) is a calcium-dependent lectin, which confers the opportunistic yeast the ability to adhere to human epithelial cells. This lectin domain is able to interact with galactosides and, more precisely, with glycan molecules containing the Galß-1,3-GalNAc disaccharide, also known as the T-antigen. Based on the crystallographic structure of the N-Epa1p domain and the role of the variable loop CBL2 in glycan binding, saturation mutagenesis on some residues of the CBL2 loop was used to increase the binding affinity of N-Epa1p for fibronectin, which was selected as a model of a human glycoprotein. Two adhesin mutants, E227A and Y228W, with improved binding features were obtained. More importantly, a glycan array screening revealed that single-point mutations in the CBL2 could produce significant changes in the carbohydrate specificity of the protein. In particular, lectin molecules were generated with a high affinity for sulfated glycans, which may find an application as molecular probes for the identification of 6-sulfogalactose containing glycans and glycoconjugates.


Assuntos
Carboidratos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mutação/genética , Engenharia de Proteínas , Sítios de Ligação/genética , Proteínas Fúngicas/química , Lectinas/química , Especificidade por Substrato
11.
Artigo em Inglês | MEDLINE | ID: mdl-23832207

RESUMO

Flo1p and Lg-Flo1p are two cell-wall adhesins belonging to the Flo (flocculation) protein family from the yeasts Saccharomyces cerevisiae and S. pastorianus. The main function of these modular proteins endowed with calcium-dependent lectin activity is to mediate cell-cell adhesion events during yeast flocculation, a process which is well known at the cellular level but still not fully characterized from a molecular perspective. Recently, structural features of the N-terminal Flo lectin domains, including the N-terminal domain of Lg-Flo1p (N-Lg-Flo1p), and their interactions with carbohydrate molecules have been investigated. However, structural data concerning the N-terminal domain of Flo1p (N-Flo1p), which is the most specific among the Flo proteins, are missing and information about the N-Lg-Flo1p-carbohydrate interaction still lacks detailed structural insight. Here, the crystallization and preliminary X-ray characterization of the apo form and the mannose complex of N-Flo1p and X-ray analysis of N-Lg-Flo1p crystals soaked in α-1,2-mannobiose are reported. The N-Flo1p crystals diffracted to a resolution of 1.43 Å in the case of the apo form and to 2.12 Å resolution for the mannose complex. Both crystals were orthorhombic and belonged to space group P212121, with one molecule in the asymmetric unit. The N-Lg-Flo1p-α-1,2-mannobiose complex crystal diffracted to 1.73 Å resolution and belonged to the monoclinic space group P1211 with two molecules in the asymmetric unit.


Assuntos
Adesinas Bacterianas/metabolismo , Mananas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Floculação , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 3): 210-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349222

RESUMO

The yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wall proteins whose N-terminal domains are endowed with a calcium-dependent lectin activity. This feature allows the yeast cells to adhere to host cells by establishing multiple interactions with the glycans expressed on their cell membrane. The ligand-binding domain of the Epa1p adhesin, which is one of the best characterized in the Epa family, was expressed in Escherichia coli, purified and crystallized in complex with lactose. Sequence identity with the domain of another yeast adhesin, the Flo5p flocculin from Saccharomyces cerevisiae, was exploited for molecular replacement and the structure of the domain was solved at a resolution of 1.65 Å. The protein is a member of the PA14 superfamily. It has a ß-sandwich core and a DcisD calcium-binding motif, which is also present in the binding site of Flo5p. However, Epa1p differs from this homologue by the lack of a Flo5-like subdomain and by a significantly decreased accessibility of the solvent to the binding site, in which a calcium ion still plays an active role in the interactions with carbohydrates. This structural insight, together with fluorescence-assay data, confirms and explains the higher specificity of Epa1p adhesin for glycan molecules compared with the S. cerevisiae flocculins.


Assuntos
Adesinas Bacterianas/química , Candida glabrata/química , Proteínas Fúngicas/química , Lectinas/química , Polissacarídeos/química , Saccharomyces cerevisiae/genética , Adesinas Bacterianas/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Adesão Celular/fisiologia , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Lectinas/genética , Lectinas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Microbiol ; 80(6): 1667-79, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21585565

RESUMO

The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.


Assuntos
Candida albicans/metabolismo , Fucose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Candida albicans/química , Candida albicans/genética , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA