Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Ophthalmol ; 17(5): 794-805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766348

RESUMO

AIM: To investigate the stability of the seven housekeeping genes: beta-actin (ActB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18s ribosomal unit 5 (18s), cyclophilin A (CycA), hypoxanthine-guanine phosphoribosyl transferase (HPRT), ribosomal protein large P0 (36B4) and terminal uridylyl transferase 1 (U6) in the diabetic retinal tissue of rat model. METHODS: The expression of these seven genes in rat retinal tissues was determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) in two groups; normal control rats and streptozotocin-induced diabetic rats. The stability analysis of gene expression was investigated using geNorm, NormFinder, BestKeeper, and comparative delta-Ct (ΔCt) algorithms. RESULTS: The 36B4 gene was stably expressed in the retinal tissues of normal control animals; however, it was less stable in diabetic retinas. The 18s gene was expressed consistently in both normal control and diabetic rats' retinal tissue. That this gene was the best reference for data normalisation in RT-qPCR studies that used the retinal tissue of streptozotocin-induced diabetic rats. Furthermore, there was no ideal gene stably expressed for use in all experimental settings. CONCLUSION: Identifying relevant genes is a need for achieving RT-qPCR validity and reliability and must be appropriately achieved based on a specific experimental setting.

2.
Vision Res ; 221: 108434, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38805893

RESUMO

Treatment of glaucoma, the leading cause of irreversible blindness, remains challenging. The apoptotic loss of retinal ganglion cells (RGCs) in glaucoma is the pathological hallmark. Current treatments often remain suboptimal as they aim to halt RGC loss secondary to reduction of intraocular pressure. The pathophysiological targets for exploring direct neuroprotective approaches, therefore are highly relevant. Sphingolipids have emerged as significant target molecules as they are not only the structural components of various cell constituents, but they also serve as signaling molecules that regulate molecular pathways involved in cell survival and death. Investigations have shown that a critical balance among various sphingolipid species, particularly the ceramide and sphingosine-1-phosphate play a role in deciding the fate of the cell. In this review we briefly discuss the metabolic interconversion of sphingolipid species to get an insight into "sphingolipid rheostat", the dynamic balance among metabolites. Further we highlight the role of sphingolipids in the key pathophysiological mechanisms that lead to glaucomatous loss of RGCs. Lastly, we summarize the potential drug candidates that have been investigated for their neuroprotective effects in glaucoma via their effects on sphingolipid axis.

3.
Expert Opin Ther Targets ; 27(12): 1217-1229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38069479

RESUMO

INTRODUCTION: Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED: This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-ß as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION: Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular , Glaucoma/tratamento farmacológico , Malha Trabecular/metabolismo , Matriz Extracelular/metabolismo , Humor Aquoso/metabolismo
4.
Mol Aspects Med ; 94: 101228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016252

RESUMO

Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.


Assuntos
Glaucoma , Roedores , Ratos , Camundongos , Humanos , Animais , Roedores/genética , Pressão Intraocular , Modelos Animais de Doenças , Glaucoma/genética , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Fenótipo
5.
BMC Ophthalmol ; 23(1): 421, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858128

RESUMO

Diabetic retinopathy (DR), one of the leading causes of visual impairment and blindness worldwide, is one of the major microvascular complications in diabetes mellitus (DM). Globally, DR prevalence among DM patients is 25%, and 6% have vision-threatening problems among them. With the higher incidence of DM globally, more DR cases are expected to be seen in the future. In order to comprehend the pathophysiological mechanism of DR in humans and discover potential novel substances for the treatment of DR, investigations are typically conducted using various experimental models. Among the experimental models, in vivo models have contributed significantly to understanding DR pathogenesis. There are several types of in vivo models for DR research, which include chemical-induced, surgical-induced, diet-induced, and genetic models. Similarly, for the in vitro models, there are several cell types that are utilised in DR research, such as retinal endothelial cells, Müller cells, and glial cells. With the advancement of DR research, it is essential to have a comprehensive update on the various experimental models utilised to mimic DR environment. This review provides the update on the in vitro, in vivo, and ex vivo models used in DR research, focusing on their features, advantages, and limitations.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Baixa Visão , Humanos , Células Endoteliais/patologia , Cegueira/etiologia , Retina/patologia , Baixa Visão/etiologia , Prevalência
6.
Expert Opin Drug Discov ; 18(11): 1287-1300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608634

RESUMO

INTRODUCTION: Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP. AREAS COVERED: Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma. EXPERT OPINION: Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.


Assuntos
Glaucoma , Pressão Intraocular , Animais , Células Ganglionares da Retina/patologia , Nervo Óptico/patologia , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Modelos Animais , Descoberta de Drogas , Modelos Animais de Doenças
7.
BMC Complement Med Ther ; 23(1): 179, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268913

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats. METHODS: Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR. RESULTS: TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p < 0.05) and retinal venous diameter (p < 0.001). TRF also lowered the retinal NFκB activation (p < 0.05) as well as expressions of IL-1ß, IL-6, TNF-α, IFN-γ, iNOS and MCP-1 (p < 0.05) compared to vehicle-treated diabetic rats. Moreover, TRF also reduced retinal expression of VEGF (p < 0.001), IGF-1 (p < 0.001) and HIF-1α (p < 0.05) compared to vehicle-treated rats with diabetes. CONCLUSION: Oral TRF provided protection against retinal inflammation and angiogenesis in rats with STZ-induced diabetes by suppressing the expression of the markers of retinal inflammation and angiogenesis.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Tocotrienóis , Ratos , Masculino , Animais , Tocotrienóis/farmacologia , Ratos Sprague-Dawley , Estreptozocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/tratamento farmacológico , Inflamação/tratamento farmacológico , Peso Corporal
8.
Neurosci Res ; 193: 1-12, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36796452

RESUMO

Adenosine A1 receptors (AA1R) have been shown to counteract N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitotoxicity. In the present study, we investigated the role of AA1R in neuroprotection by trans-resveratrol (TR) against NMDA-induced retinal injury. In total, 48 rats were divided into the following four groups: normal rats pretreated with vehicle; rats that received NMDA (NMDA group); rats that received NMDA after pretreatment with TR; and rats that received NMDA after pretreatment with TR and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an AA1R antagonist. Assessment of general and visual behaviour was performed using the open field test and two-chamber mirror test, respectively, on Days 5 and 6 post NMDA injection. Seven days after NMDA injection, animals were euthanized, and eyeballs and optic nerves were harvested for histological parameters, whereas retinae were isolated to determine the redox status and expression of pro- and anti-apoptotic proteins. In the present study, the retinal and optic nerve morphology in the TR group was protected from NMDA-induced excitotoxic damage. These effects were correlated with the lower retinal expression of proapoptotic markers, lipid peroxidation, and markers of nitrosative/oxidative stress. The general and visual behavioural parameters in the TR group showed less anxiety-related behaviour and better visual function than those in the NMDA group. All the findings observed in the TR group were abolished by administration of DPCPX.


Assuntos
N-Metilaspartato , Receptor A1 de Adenosina , Ratos , Animais , N-Metilaspartato/toxicidade , Resveratrol , Ratos Sprague-Dawley , Neuroproteção , Receptores de N-Metil-D-Aspartato
9.
Neural Regen Res ; 18(2): 382-388, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900434

RESUMO

Amyloid-beta (Aß)-related alterations, similar to those found in the brains of patients with Alzheimer's disease, have been observed in the retina of patients with glaucoma. Decreased levels of brain-derived neurotrophic factor (BDNF) are believed to be associated with the neurotoxic effects of Aß peptide. To investigate the mechanism underlying the neuroprotective effects of BDNF on Aß1-40-induced retinal injury in Sprague-Dawley rats, we treated rats by intravitreal administration of phosphate-buffered saline (control), Aß1-40 (5 nM), or Aß1-40 (5 nM) combined with BDNF (1 µg/mL). We found that intravitreal administration of Aß1-40 induced retinal ganglion cell apoptosis. Fluoro-Gold staining showed a significantly lower number of retinal ganglion cells in the Aß1-40 group than in the control and BDNF groups. In the Aß1-40 group, low number of RGCs was associated with increased caspase-3 expression and reduced TrkB and ERK1/2 expression. BDNF abolished Aß1-40-induced increase in the expression of caspase-3 at the gene and protein levels in the retina and upregulated TrkB and ERK1/2 expression. These findings suggest that treatment with BDNF prevents RGC apoptosis induced by Aß1-40 by activating the BDNF-TrkB signaling pathway in rats.

10.
Biomed Pharmacother ; 153: 113533, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076612

RESUMO

Oxidative stress, a key player in diabetic retinopathy (DR), is associated with retinal cell apoptosis. This study investigated the effect of tocotrienol-rich fraction (TRF), a potent antioxidant, towards visual behaviour, retinal morphology, cells apoptosis and redox status in streptozotocin (STZ)-induced DR rats. Sprague-Dawley rats were divided into 3 groups: non-diabetic (N), was injected with citrate buffer intraperitoneally, diabetic treated with vehicle (DV), and diabetic treated with TRF (DT), were injected with STZ intraperitoneally (55 mg/kg) to induce diabetes. DT received 100 mg of TRF/kg orally for 12-weeks, whereas DV and N received vehicle. The general and visual-behaviour responses were assessed at week 12 in an open field arena. Rats were then sacrificed, and retinae were processed for haematoxylin and eosin (H&E) and terminal transferase-mediated dUTP nick end-labelling (TUNEL) staining. Retinal antioxidant, lipid peroxidation and anti-apoptotic markers were measured. The general and visual-behaviour responses in DT were comparable to N. Retinal thickness and cell counts were lower in DV and DT compared to N. Lower number of TUNEL-positive cells were observed in DT compared to DV (1.48-fold, p < 0.001) which correlated with retinal caspase-3 expression (2.31-fold, p < 0.001). The retinal oxidative stress in DT was lower than DV as indicated by higher reduced glutathione (2.10-fold, p < 0.05), superoxide dismutase (1.12-fold, p < 0.05) and catalase (1.40-fold, p < 0.001), and lower malondialdehyde (2.54-fold, p < 0.001). In conclusion, oral TRF (100 mg/kg) supplementation for 12-weeks reduces retinal oxidative stress in STZ-induced DR rats, which in turn reduces retinal cell apoptosis and protects retinal morphology. These findings were associated with preservation of the visual-behaviour responses.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Estreptozocina , Tocotrienóis , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/tratamento farmacológico , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Superóxido Dismutase/metabolismo , Tocotrienóis/farmacologia , Tocotrienóis/uso terapêutico
11.
J Neuropathol Exp Neurol ; 81(8): 596-613, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35799401

RESUMO

Given the neuroprotective effects of trans-resveratrol (RV), this study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in RV-mediated neuroprotection in a rat intracerebral hemorrhage (ICH) model induced by intrastriatal injection of collagenase. Rats were divided into 5 groups: (1) control, (2) sham-operated, (3) ICH pretreated with vehicle, (4) ICH pretreated with RV, and (5) ICH pretreated with RV and the A1R antagonist DPCPX. At 48 hours after ICH, the rats were subjected to neurological testing. Brain tissues were assessed for neuronal density and morphological features using routine and immunohistochemical staining. Expression of tumor necrosis factor-α (TNF-α), caspase-3, and RIPK3 proteins was examined using ELISA. A1R, MAPK P38, Hsp90, TrkB, and BDNF genes were examined using RT-qPCR. RV protected against neurological deficits and neuronal depletion, restored the expression of TNF-α, CASP3, RIPK3, A1R, and Hsp90, and increased BDNF/TrkB. DPCPX abolished the effects of RV on neurological outcomes, neuronal density, CASP3, RIPK3, A1R, Hsp90, and BDNF. These data indicate that the neuroprotection by RV involves A1R and inhibits CASP3-dependent apoptosis and RIPK3-dependent necroptosis in the perihematoma region; this is likely to be mediated by crosstalk between A1R and the BDNF/TrkB pathway.


Assuntos
Fármacos Neuroprotetores , Receptor A1 de Adenosina , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3 , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Resveratrol/efeitos adversos , Fator de Necrose Tumoral alfa
12.
Front Pharmacol ; 13: 875662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668928

RESUMO

Retinal ganglion cells (RGCs) are neurons of the visual system that are responsible for transmitting signals from the retina to the brain via the optic nerve. Glaucoma is an optic neuropathy characterized by apoptotic loss of RGCs and degeneration of optic nerve fibers. Risk factors such as elevated intraocular pressure and vascular dysregulation trigger the injury that culminates in RGC apoptosis. In the event of injury, the survival of RGCs is facilitated by neurotrophic factors (NTFs), the most widely studied of which is brain-derived neurotrophic factor (BDNF). Its production is regulated locally in the retina, but transport of BDNF retrogradely from the brain to retina is also crucial. Not only that the interruption of this retrograde transport has been detected in the early stages of glaucoma, but significantly low levels of BDNF have also been detected in the sera and ocular fluids of glaucoma patients, supporting the notion that neurotrophic deprivation is a likely mechanism of glaucomatous optic neuropathy. Moreover, exogenous NTF including BDNF administration was shown reduce neuronal loss in animal models of various neurodegenerative diseases, indicating the possibility that exogenous BDNF may be a treatment option in glaucoma. Current literature provides an extensive insight not only into the sources, transport, and target sites of BDNF but also the intracellular signaling pathways, other pathways that influence BDNF signaling and a wide range of its functions. In this review, the authors discuss the neuroprotective role of BDNF in promoting the survival of RGCs and its possible application as a therapeutic tool to meet the challenges in glaucoma management. We also highlight the possibility of using BDNF as a biomarker in neurodegenerative disease such as glaucoma. Further we discuss the challenges and future strategies to explore the utility of BDNF in the management of glaucoma.

13.
Exp Eye Res ; 220: 109104, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577069

RESUMO

Glutamate-induced excitotoxic injury is widely described as a prominent pathophysiological mechanism in several neurodegenerative diseases including glaucoma. Glaucoma, the leading cause of irreversible blindness, is characterized by loss of retinal ganglion cells (RGC). Currently, the treatment focuses on lowering intraocular pressure (IOP) and no neuroprotective therapies are available. Since excessive glutamate-mediated neurotransmission underlies glaucomatous RGC apoptosis, enhancing synaptic glutamate clearance by glutamate transporters in glial cells is expected to protect against excitotoxic injury. Trans-resveratrol is known for its neuroprotective effects; however, its effects on the expression of glutamate transporters and glutamate clearance in retina remain unclear. Hence, in the current study, we investigated the protective effects of trans-resveratrol against glutamate-induced retinal injury in rats. Rats were intravitreally injected with glutamate alone or glutamate with trans-resveratrol as pre- and post-treatment. Animals were subjected to Open Field Test (OFT) on day six and a two-chamber mirror test on day seven post-injection. Subsequently, rats were sacrificed and retinal expression of excitatory amino acid transporter (EAAT)1 and EAAT2 gene and protein was determined using PCR and ELISA, respectively. Retinal glutamate concentration was measured using ELISA and retinal morphology was studied on H&E-stained retinal sections. It was observed that pre-treatment with trans-resveratrol causes gene expression for EAAT1 and EAAT2 to increase by 2.51 and 1.93 folds compared to glutamate-treated group (p < 0.001 and p < 0.01, respectively); while the same in trans-resveratrol post-treatment group showed a 1.58- and 1.44 folds upregulation (p < 0.05).The retinal EAAT1 and EAAT2 protein expression was significantly greater in trans-resveratrol pre-treatment group compared to glutamate-treated group (p < 0.05) but not in post-treatment group. Retinal glutamate concentration was1.64 folds greater in glutamate-treated group than the vehicle-treated group (p < 0.01) but the same was 1.27-fold lower in trans-resveratrol pre-treatment group compared to glutamate-treated group (p < 0.01). Corresponding to these findings, we observed preservation of retinal morphology and visual behaviour in trans-resveratrol pre-treatment group compared to glutamate-treated group. We did not observe similar effects of trans-resveratrol when it was given as post-treatment after glutamate administration. In conclusion, current study showed that pre-treatment with trans-resveratrol protects against glutamate induced changes in retinal morphology and visual behaviour by increasing the expression of EAAT1 and EAAT2 and increasing glutamate clearance in rat retinas. The results of this study may be relevant to disease conditions involving excitotoxic neuronal injury.


Assuntos
Traumatismos Oculares , Glaucoma , Doenças Retinianas , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Traumatismos Oculares/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Ácido Glutâmico/metabolismo , Ratos , Resveratrol/farmacologia , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo
14.
Curr Eye Res ; 47(6): 866-873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35188034

RESUMO

PURPOSE: Retinal and optic nerve damage in glaucoma involves excitotoxicity via N-methyl-D-aspartate (NMDA) receptors. Since, trans-resveratrol (TR) is known to provide neuroprotection, we investigated its protective effects against NMDA-induced retinal and optic nerve injury. METHODS: Sprague Dawley rats were divided into four groups which received vehicle (PBS), NMDA, and TR 0.4 or TR 4 nmol 24 h prior to NMDA, unilaterally and intravitreally. Seven days post-injection, rats were euthanized; eyeballs were enucleated and subjected to hematoxylin and eosin and terminal transferase dUTP nick end labeling staining while optic nerves were isolated for toluidine blue staining. RESULTS: Retinal morphometry showed that ganglion cell layer (GCL) layer thickness within inner retina (IR), retinal cell count (RCC) per 100-µm length of GCL, RCC per 100-µm2 area of GCL, and RCC per 100 µm2 of IR were significantly higher in both TR-treated groups compared to the NMDA group. No differences were observed between the two dose groups. Optic nerve morphology was in accordance with the retinal morphology whereby TR-treated groups showed significantly lesser degenerative changes compared to NMDA-treated group. CONCLUSIONS: TR protects against NMDA-induced changes in retinal and optic nerve morphology by preventing retinal cell apoptosis.


Assuntos
Carcinoma de Células Renais , Traumatismos Oculares , Neoplasias Renais , Traumatismos do Nervo Óptico , Doenças Retinianas , Animais , Apoptose , N-Metilaspartato/toxicidade , Nervo Óptico , Traumatismos do Nervo Óptico/induzido quimicamente , Traumatismos do Nervo Óptico/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Retina , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/prevenção & controle
15.
Front Pharmacol ; 12: 798794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970151

RESUMO

N-methyl-D-aspartate receptor (NMDAR) overstimulation is known to mediate neurodegeneration, and hence represents a relevant therapeutic target for neurodegenerative disorders including glaucoma. This study examined the neuroprotective effects of philanthotoxin (PhTX)-343 against NMDA-induced retinal injury in rats. Male Sprague Dawley rats were divided into three groups; group 1 received phosphate buffer saline as the negative control, group 2 was injected with NMDA (160 nM) to induce retinal excitotoxic injury, and group 3 was pre-treated with PhTX-343 (160 nM) 24 h before NMDA exposure. All treatments were given intravitreally and bilaterally. Seven days post-treatment, rats were subjected to visual behaviour assessments using open field and colour recognition tests. Rats were then euthanized, and the retinas were harvested and subjected to haematoxylin and eosin (H&E) staining for morphometric analysis and 3-nitrotyrosine (3-NT) ELISA protocol as the nitrosative stress biomarker. PhTX-343 treatment prior to NMDA exposure improved the ability of rats to recognize visual cues and preserved visual functions (i.e., recognition of objects with different colours). Morphological examination of retinal tissues showed that the fractional ganglion cell layer thickness within the inner retina (IR) in the PhTX-343 treated group was greater by 1.28-fold as compared to NMDA-treated rats (p < 0.05) and was comparable to control rats (p > 0.05). Additionally, the number of retinal cell nuclei/100 µm2 in IR for the PhTX-343-treated group was greater by 1.82-fold compared to NMDA-treated rats (p < 0.05) and was comparable to control group (p > 0.05). PhTX-343 also reduced the retinal 3-NT levels by 1.74-fold compared to NMDA-treated rats (p < 0.05). In conclusion, PhTX-343 pretreatment protects against NMDA-induced retinal morphological changes and visual impairment by suppressing nitrosative stress as reflected by the reduced retinal 3-NT level.

16.
Neural Regen Res ; 16(11): 2330-2344, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818520

RESUMO

Magnesium acetyltaurate (MgAT) has been shown to have a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal cell apoptosis. The current study investigated the involvement of nuclear factor kappa-B (NF-κB), p53 and AP-1 family members (c-Jun/c-Fos) in neuroprotection by MgAT against NMDA-induced retinal damage. In this study, Sprague-Dawley rats were randomized to undergo intravitreal injection of vehicle, NMDA or MgAT as pre-treatment to NMDA. Seven days after injections, retinal ganglion cells survival was detected using retrograde labelling with fluorogold and BRN3A immunostaining. Functional outcome of retinal damage was assessed using electroretinography, and the mechanisms underlying antiapoptotic effect of MgAT were investigated through assessment of retinal gene expression of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos) using reverse transcription-polymerase chain reaction. Retinal phospho-NF-κB, phospho-p53 and AP-1 levels were evaluated using western blot assay. Rat visual functions were evaluated using visual object recognition tests. Both retrograde labelling and BRN3A immunostaining revealed a significant increase in the number of retinal ganglion cells in rats receiving intravitreal injection of MgAT compared with the rats receiving intravitreal injection of NMDA. Electroretinography indicated that pre-treatment with MgAT partially preserved the functional activity of NMDA-exposed retinas. MgAT abolished NMDA-induced increase of retinal phospho-NF-κB, phospho-p53 and AP-1 expression and suppressed NMDA-induced transcriptional activity of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos). Visual object recognition tests showed that MgAT reduced difficulties in recognizing the visual cues (i.e. objects with different shapes) after NMDA exposure, suggesting that visual functions of rats were relatively preserved by pre-treatment with MgAT. In conclusion, pre-treatment with MgAT prevents NMDA induced retinal injury by inhibiting NMDA-induced neuronal apoptosis via downregulation of transcriptional activity of NF-κB, p53 and AP-1-mediated c-Jun/c-Fos. The experiments were approved by the Animal Ethics Committee of Universiti Teknologi MARA (UiTM), Malaysia, UiTM CARE No 118/2015 on December 4, 2015 and UiTM CARE No 220/7/2017 on December 8, 2017 and Ethics Committee of Belgorod State National Research University, Russia, No 02/20 on January 10, 2020.

17.
Neural Regen Res ; 16(5): 967-971, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33229737

RESUMO

Glaucoma is a range of progressive optic neuropathies characterized by progressive retinal ganglion cell loss and visual field defects. It is recognized as a leading cause of irreversible blindness affecting more than 70 million people worldwide. Currently, reduction of intraocular pressure, a widely recognized risk factor for glaucoma development, is the only pharmacological strategy for slowing down retinal ganglion cell loss and disease progression. However, retinal ganglion cell death and visual field loss have been observed in normotensive glaucoma, suggesting that the disease process is partially independent of intraocular pressure. Taurine is one of the agents that have attracted attention of researchers recently. Taurine has been shown to be involved in multiple cellular functions, including a central role as a neurotransmitter, as a trophic factor in the central nervous system development, as an osmolyte, as a neuromodulator, and as a neuroprotectant. It also plays a role in the maintenance of the structural integrity of the membranes and in the regulation of calcium transport and homeostasis. Taurine is known to prevent N-methyl-D-aspartic acid-induced excitotoxic injury to retinal ganglion cells. A recently published study clearly demonstrated that taurine prevents retinal neuronal apoptosis both in vivo and in vitro. Protective effect of taurine may be attributed to direct inhibition of apoptosis, an activation of brain derived neurotrophic factor-related neuroprotective mechanisms and reduction of retinal oxidative and nitrosative stresses. Further studies are needed to fully explore the potential of taurine as a neuroprotective agent, so that it can be applied in clinical practice, particularly for the treatment of glaucoma. The objective of current review was to summarize recent evidence on neuroprotective properties of taurine in glaucoma.

18.
Eur J Pharmacol ; 887: 173431, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758568

RESUMO

Intraocular pressure (IOP) lowering in glaucomatous eyes is currently achieved mainly by improved aqueous outflow via alternate drainage pathways. However, the focus is now shifting to trabecular meshwork (TM), the site or major pathological changes including increased extracellular matrix (ECM) deposition and reduced matrix metalloproteinases (MMPs) secretion by TM cells. Trans-resveratrol was previously shown to lower IOP and reduce ECM deposition; however, the mechanisms of action remain unclear. Therefore, we determined the effect of trans-resveratrol on MMP-2 and -9 expression by human TM cells (HTMCs) in the presence of dexamethasone and whether it also affects adenosine A1 receptors (A1AR) expression and nuclear factor kappa B (NFkB) activation. We observed that trans-resveratrol, 12.5 µM, increased MMP-2 and -9 protein expression by HTMCs despite exposure to dexamethasone (1.89- and 1.53-fold, respectively; P < 0.001). Further it was observed that trans-resveratrol increases A1AR expression in HTMC in the presence of dexamethasone (1.55-fold; P < 0.01). Trans-resveratrol also increased NFkB activation in the presence of dexamethasone and A1AR antagonist (P < 0.01 versus dexamethasone group). These effects of trans-resveratrol were associated with increased MMP -2 and -9 expression. It could be concluded that trans-resveratrol prevents dexamethasone-induced reduction in MMP-2 and -9 secretion by NFkB activation in HTMCs. This effect of trans-resveratrol is likely to involve increased A1AR expression.


Assuntos
Dexametasona/toxicidade , Metaloproteinases da Matriz/biossíntese , NF-kappa B/biossíntese , Receptor A1 de Adenosina/biossíntese , Resveratrol/farmacologia , Malha Trabecular/metabolismo , Antioxidantes/farmacologia , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Humanos , Inibidores de Metaloproteinases de Matriz/toxicidade , NF-kappa B/antagonistas & inibidores , Malha Trabecular/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-32697755

RESUMO

Objectives Steroid-induced ocular hypertension and glaucoma are associated with extracellular matrix remodeling at the trabecular meshwork (TM) of the eye due to reduced secretion of matrix metalloproteinases (MMPs), a family of enzymes regulating extracellular matrix proteolysis. Several biological functions of steroids are known to involve regulation of adenosine A1 receptors (A1AR) and nuclear factor kappa B (NFKB). Since MMPs expression in TM has been shown to be regulated by A1AR as well as transcription factors, it is likely that dexamethasone-induced changes in aqueous humor dynamics involve reduced MMP and A1AR expression and reduced NFKB activation. Hence, the current study investigated the association of dexamethasone-induced reduction in MMP secretion with reduced NFKB activation and A1AR expression. Methods Human trabecular meshwork cells (HTMCs) were characterized by estimating myocilin and alpha smooth muscle actin expression and then were treated with dexamethasone 100 nM for 2, 5 and 7 days. The MMP secretion was estimated in culture media using Western blot. Immunocytochemistry (ICC) and ELISA were done to investigate the effect of dexamethasone on NFKB phosphorylation. A1AR expression in HTMCs was determined using Western blot and ELISA. Results Dexamethasone caused a significant reduction in both MMP-2 and -9 expression compared to untreated group after five and seven days but not after two days of culture. Significantly reduced phosphorylated NFKB and A1AR protein levels were detected in dexamethasone treated compared to vehicle treated HTMCs after five days of culture. Conclusions Dexamethasone reduces MMP-2 and -9 secretion by HTMCs and this effect of dexamethasone is associated with reduced NFKB phosphorylation and A1AR expression.


Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , NF-kappa B/metabolismo , Malha Trabecular/efeitos dos fármacos , Humor Aquoso/efeitos dos fármacos , Células Cultivadas , Dexametasona/administração & dosagem , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glucocorticoides/administração & dosagem , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Receptor A1 de Adenosina/metabolismo , Fatores de Tempo , Malha Trabecular/metabolismo
20.
PLoS One ; 15(7): e0236450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706792

RESUMO

Retinal ganglion cell (RGC) loss and optic neuropathy, both hallmarks of glaucoma, have been shown to involve N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity. This study investigated the neuroprotective effects of Philanthotoxin (PhTX)-343 in NMDA-induced retinal injury to alleviate ensuing visual impairments. Sprague-Dawley rats were divided into three; Group I was intravitreally injected with phosphate buffer saline as the control, Group II was injected with NMDA (160 nM) to induce retinal excitotoxic injury, while Group III was injected with PhTX-343 (160 nM) 24 h prior to excitotoxicity induction with NMDA. Rats were subjected to visual behaviour tests seven days post-treatment and subsequently euthanized. Rat retinas and optic nerves were subjected to H&E and toluidine blue staining, respectively. Histological assessments showed that NMDA exposure resulted in significant loss of retinal cell nuclei and thinning of ganglion cell layer (GCL). PhTX-343 pre-treatment prevented NMDA-induced changes where the RGC layer morphology is similar to the control. The numbers of nuclei in the NMDA group were markedly lower compared to the control (p<0.05). PhTX-343 group had significantly higher numbers of nuclei within 100 µm length and 100 µm2 area of GCL (2.9- and 1.7-fold, respectively) compared to NMDA group (p<0.05). PhTX-343 group also displayed lesser optic nerve fibres degeneration compared to NMDA group which showed vacuolation in all sections. In the visual behaviour test, the NMDA group recorded higher total distance travelled, and lower total immobile time and episodes compared to the control and PhTX-343 groups (p<0.05). Object recognition tests showed that the rats in PhTX-343 group could recognize objects better, whereas the same objects were identified as novel by NMDA rats despite multiple exposures (p<0.05). Visual performances in the PhTX-343 group were all comparable with the control (p>0.05). These findings suggested that PhTX-343 inhibit retinal cell loss, optic nerve damage, and visual impairments in NMDA-induced rats.


Assuntos
Fármacos Neuroprotetores , Traumatismos do Nervo Óptico/tratamento farmacológico , Nervo Óptico/efeitos dos fármacos , Fenóis , Poliaminas , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Masculino , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/induzido quimicamente , Fenóis/farmacologia , Fenóis/uso terapêutico , Poliaminas/farmacologia , Poliaminas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/patologia , Visão Ocular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA