Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Anal Bioanal Chem ; 416(8): 1857-1865, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319357

RESUMO

Phosphatidylinositols and their phosphorylated derivatives, known as phosphoinositides, are crucial in cellular processes, with their abnormalities linked to various diseases. Thus, identifying and measuring phosphoinositide levels in tissues are crucial for understanding their contributions to cellular processes and disease development. One powerful technique for mapping the spatial distribution of molecules in biological samples is matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). This technique allows for the simultaneous detection and analysis of multiple lipid classes in situ, making it invaluable for unbiased lipidomic studies. However, detecting phosphoinositides with MALDI-MSI is challenging due to their relatively low abundance in tissues and complex matrix effects. Addressing this, our study focused on optimizing matrix selection and thickness for better detection of phosphatidylinositols and their phosphorylated forms in mouse kidney tissues. Various matrices were assessed, including 9AA, DAN, CMBT, and DHA, adjusting their coating to improve ionization efficiency. Our results demonstrate that DAN, DHA, and CMBT matrices produced high-intensity chemical images of phosphatidylinositol distributions within kidney sections. These matrices, particularly DAN, DHA, and CMBT, allowed the identification of even low-abundance phosphoinositides, through tentative identifications. Notably, DAN and DHA served as optimal candidates due to their prominent detection and ability to map a majority of phosphatidylinositol species, while CMBT showed potential detection capability for phosphatidylinositol triphosphate compounds. These findings not only provide valuable insights for future research on the involvement of phosphoinositides in kidney pathophysiology, but also propose the use of the identified optimal matrices, particularly DAN and DHA, as the preferred choices for enhanced detection and mapping of these lipid species in future studies.


Assuntos
Diagnóstico por Imagem , Fosfatidilinositóis , Animais , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Rim , Lasers
2.
J Mass Spectrom ; 59(2): e5000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263874

RESUMO

This study describes a novel application for sandpaper spray ionization mass spectrometry (SPS-MS), to examine the surface of maple tree (Acer sp.) leaves. By comparing mass spectrometry fingerprints, healthy leaves from those infected with powdery mildew and Rhytisma acerinum were distinguished. Leaves were grated with sandpaper, cut into triangles, and placed before the mass spectrometer, with the addition of a methanol-formic acid solution. Multivariate statistical analysis categorized the samples into three groups. Overall, SPS-MS effectively analyzed leaves with infectious microorganisms, potentially aiding in the creation of fungal identification databanks.


Assuntos
Acer , Fungos , Bases de Dados Factuais , Espectrometria de Massas , Metanol
3.
J Mass Spectrom ; 58(7): e4956, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37401101

RESUMO

Paper spray mass spectrometry (PS-MS) is an ambient ionization technique that allows for rapid and direct mass spectrometry analysis for a wide range of chemical compounds due to its portability, little to no sample preparation, and cost-effective materials. As applications with this technique continue to expand, the identification and discrimination of bacteria at the strain level remain a promising avenue for researchers. Although studies in the past demonstrated the applicability of PS-MS to discriminate bacteria at the strain level, no one has reported the strain-level differentiation of actinobacteria without using solvent for PS-MS. Hence, this study demonstrates that optimization of PS-MS permits the investigation and differentiation of the metabolic profiles of actinobacteria without the need for solvents, diminishing the potential for sample contamination and consequently increasing the versatility of this technique. In doing so, strains of actinobacteria (CAAT P5-21, CAAT P5-16, CAAT 8-25, CAAT P8-92, and CAAT P11-13) were grown and transferred to produce a crude growth medium. The supernatant was used for the PS-MS analyses using a Thermo Scientific LTQ mass spectrometer. Multivariate statistical analysis, including principal component analysis (PCA) and hierarchal cluster analysis (HCA), was employed to chemically distinguish the strains of bacteria. As a result, each strain of actinobacteria could be visually differentiated based on their metabolic profile. These findings demonstrate the practicability of using a liquid medium as an alternative to many other organic solvents when analyzing bacteria, making PS-MS a crucial addition to a microbiologist's research toolkit.


Assuntos
Actinobacteria , Actinobacteria/metabolismo , Solo , Espectrometria de Massas/métodos , Bactérias , Solventes/química , Metaboloma , Papel
4.
Rapid Commun Mass Spectrom ; 37(16): e9594, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37430447

RESUMO

RATIONALE: Sublimation is a solvent-free technique used to apply a uniform matrix coating over a large sample plate, improving the matrix's purity and enhancing the analyte signal. Although the 5-chloro-2-mercaptobenzothiazole (CMBT) matrix was introduced years ago, there are no reports of its application via sublimation. We investigated the experimental parameters that are optimal for CMBT matrix sublimation on mouse kidney samples. We also evaluated the stability of the sublimed CMBT matrix under a vacuum environment. Using kidney samples prepared with a sublimated CMBT matrix, we conducted matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) analysis of specific phospholipids (phosphatidylcholine and phosphatidylglycerol in the positive ion mode and phosphatidylinositol in the negative ion mode). We also explored various spatial resolutions (50, 20, and 10 µm) and performed sequential MALDI-hematoxylin and eosin (H&E) staining. METHODS: The CMBT matrix was applied to kidney samples using a sublimation apparatus connected to a vacuum pump to achieve a pressure of 0.05 Torr. The matrix was then subjected to different temperatures and sublimation times to determine the optimal conditions for matrix application. Subsequently, a Q-Exactive mass spectrometer equipped with a Spectroglyph MALDI ion source was employed for MALDI-MSI experiments. Standard protocols were followed for H&E staining after MALDI analysis. RESULTS: A matrix thickness of 0.15 mg/cm2 yielded high-quality images. The sublimated matrix exhibited minimal loss after approximately 20 h of exposure to a vacuum of 7 Torr, indicating its stability under these conditions. Ion images were successfully obtained at spatial resolutions of 50, 20, and 10 µm. Furthermore, orthogonal histological information was obtained through sequential MALDI-H&E staining. CONCLUSIONS: We demonstrate that samples prepared for MALDI-MSI using sublimation to apply the CMBT matrix yield high-quality mass spectrometric images of mouse kidney sections. We also provide data for the impact of various experimental parameters on image quality (e.g., temperature, time, matrix thickness, and spatial resolution).


Assuntos
Rim , Compostos de Sulfidrila , Animais , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amarelo de Eosina-(YS) , Lasers
5.
Metabolites ; 11(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34677425

RESUMO

Quantitative trait loci (QTLs) E and M are major soybean alleles that confer resistance to leaf-chewing insects, and are particularly effective in combination. Flavonoids and/or isoflavonoids are classes of plant secondary metabolites that previous studies agree are the causative agents of resistance of these QTLs. However, all previous studies have compared soybean genotypes that are of dissimilar genetic backgrounds, leaving it questionable what metabolites are a result of the QTL rather than the genetic background. Here, we conducted a non-targeted mass spectrometry approach without liquid chromatography to identify differences in metabolite levels among QTLs E, M, and both (EM) that were introgressed into the background of the susceptible variety Benning. Our results found that E and M mainly confer low-level, global differences in distinct sets of metabolites. The isoflavonoid daidzein was the only metabolite that demonstrated major increases, specifically in insect-treated M and EM. Interestingly, M confers increased daidzein levels in response to insect, whereas E restores M's depleted daidzein levels in the absence of insect. Since daidzein levels do not parallel levels of resistance, our data suggest a novel mechanism that the QTLs confer resistance to insects by mediating changes in hundreds of metabolites, which would be difficult for the insect to evolve tolerance. Collective global metabolite differences conferred by E and M might explain the increased resistance of EM.

6.
Chem Biol Drug Des ; 98(6): 1104-1115, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614302

RESUMO

Tetragonisca angustula honey was fractioned in a SiO2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N', N″, N‴-tris-p-coumaroyl spermidine, N', N″-dicaffeoyl, N‴-coumaroyl spermidine, N', N″, N‴-tris-caffeoyl spermidine and N', N″-dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa.


Assuntos
Antiprotozoários/farmacologia , Abelhas , Mel , Neospora/efeitos dos fármacos , Espermidina/química , Amidas/química , Animais , Antiprotozoários/química , Brasil , Células Cultivadas , Coccidiose/tratamento farmacológico , Simulação por Computador , Ácidos Cumáricos/química , NADH NADPH Oxirredutases/antagonistas & inibidores , Neuroglia/efeitos dos fármacos , Neuroglia/parasitologia , Óxido Nítrico/metabolismo , Ratos Wistar , Espermidina/análise
7.
Rapid Commun Mass Spectrom ; 35(8): e9053, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474774

RESUMO

RATIONALE: We developed a model case study to evaluate three internal standard (IS) application strategies (methods I-III) using the psycholeptic phenobarbital (PB) and the isotopically labelled IS phenobarbital-D5 (PB-D5) from in vitro dosed tissues of the golden apple snail (Pomacea diffusa) by desorption electrospray ionization mass spectrometry imaging (DESI-MSI). METHODS: In method I, the IS was deposited as microspots on top of 10 µm thick snail tissues; in method II, a thin IS film was applied; and in method III, the IS was spiked into the DESI solvent spray. DESI-MSI analyses were performed using a Thermo LTQ mass spectrometer equipped with a custom-built DESI source and two-dimensional moving stage. PB (m/z 231) and PB-D5 (m/z 236) were monitored in selected ion monitoring mode between m/z 227 and 239. RESULTS: The analytical performance of two IS strategies (methods I and II) in DESI-MSI was evaluated based on an intra- and inter-day precision assay, an accuracy assessment, and statistical analysis. In the inter-day DESI-MSI assay, method I exhibited better precision (6.5%-7.4%) than method II (10.7%-17.6%) between 10 and 100 ng/µL. In the accuracy assessment, PB quality controls of 75 ng/µL were back-calculated as 71 ± 4 and 83 ± 9 ng/µL, resulting in relative errors of -5% and 11% for methods I and II, respectively. Method III did not work under the experimental design and was not evaluated. CONCLUSIONS: Three IS application strategies were investigated and compared for a routine quantitative DESI-MSI approach. Methods I and II were not statistically significantly different as shown by a Bland-Altman plot, suggesting that these two methods can be used interchangeably. However, method III requires further research for future quantitative DESI-MSI analyses.

8.
J Mass Spectrom ; 56(2): e4690, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410238

RESUMO

Maca is a Peruvian tuberous root of the Brassicaceae family grown in the central Andes between altitudes of 4000 and 4500 m. The medicinal plant is a nutraceutical with important biological activities and health effects. In this study, we report a rapid high-performance thin layer chromatography (HPTLC)-(-)desorption electrospray ionization (DESI)-mass spectrometry (MS) method to profile and separate intact glucosinolates without prior biochemical modifications from the hydromethanolic extracts of two phenotypes, red and black Maca (Lepidium peruvianum) seeds. In the first stage of the plant's life cycle, aromatic glucosinolates were the main chemical constituents whereby six aromatic, three indole, and one aliphatic glucosinolate were tentatively identified. At the seedling stage, glucolepigramin/Glucosinalbin was the most predominant precursor, rather than Glucotropaeolin, which is mainly found in hypocotyls and roots. These findings lead us to suggest that glucolepigramin/glucosinalbin play a major role as active precursors in the biosynthetic pathways of other secondary metabolites in the early stages of plant development. Between red and black Maca seeds, only minor differences in the relative abundances of glucosinolates were observed rather than different plant metabolites. For the first time, we report six potential plant antibiotics, phytoanticipins: glycosylated ascorbigens and dihydroascorbigens from Maca seeds. We also investigated a targeted reverse phase C18 functionalized TLC-DESI-MS method with high sensitivity and specificity for Brassicaceae fatty acids in Maca seeds and health supplements such as black Maca root lyophilized powder and tinctures. The investigation of secondary metabolites by normal and reverse phase TLC-DESI-MS methods, described in this study, can aid in their identification as they begin to emerge in later stages of development in plant tissues such as leaves, hypocotyls, and roots.


Assuntos
Cromatografia em Camada Fina/métodos , Glucosinolatos/análise , Lepidium/química , Compostos Fitoquímicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia de Fase Reversa/métodos , Suplementos Nutricionais , Glucosinolatos/química , Glucosinolatos/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Sementes/química
9.
J Mass Spectrom ; 56(1): e4674, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33155339

RESUMO

Sassafras albidum is an important tree species that occurs across North America. The presence of benzylisoquinoline and aporphine alkaloids has been previously described; however, the spatial distribution of these compounds within S. albidum and other plants of Lauraceae family is still unclear. Mass spectrometry imaging has become an important tool in analysis of plants metabolites, uncovering important contributions about the functional role, biosynthetic pathway, and accumulation of these compounds in the plant. This work aimed to identify further alkaloids present in S. albidum roots, twigs, and leaves by high-performance thin-layer chromatography coupled to desorption electrospray ionization multistage mass spectrometry (HPTLC DESI-MSn ) and to map the spatial distribution of these compounds by DESI-MS imaging. A total of 12 alkaloids were indentified in the roots and twigs, and six of them were detected for the first time in S. albidum. A high number of alkaloids was found in S. albidum roots; however, alkaloids were not detected in the leaves. Cross sections of roots and twigs were blotted onto TLC plates assisted by heating and solvent extraction, and these imprints were analyzed by DESI-MS imaging. The profile of alkaloid spatial distribution in DESI-MS images showed different accumulation patterns across and within different plant parts. Most alkaloids displayed higher intensities in the outer-most layer of the roots and twigs. The detailed spatial localization pattern of these alkaloids analyzed by DESI-MS imaging in different plant parts could contribute to a better understanding of the profile of distribution, accumulation, and biosynthesis of benzylisoquinoline and aporphine alkaloids.


Assuntos
Alcaloides/análise , Cromatografia em Camada Fina/métodos , Sassafras/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sassafras/metabolismo
10.
J Mass Spectrom ; 55(6): e4520, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32452606

RESUMO

Ambient mass spectrometry is useful for analyzing compounds that would be affected by other chemical procedures. Poison frogs are known to sequester alkaloids from their diet, but the sequestration pathway is unknown. Here, we describe methods for whole-body cryosectioning of frogs and use desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to map the orally administered alkaloid histrionicotoxin 235A in a whole-body section of the poison frog Dendrobates tinctorius. Our results show that whole-body cryosectioning coupled with histochemical staining and DESI-MSI is an effective technique to visualize alkaloid distribution and help elucidate the mechanisms involved in alkaloid sequestration in poison frogs.


Assuntos
Alcaloides/análise , Venenos de Anfíbios/análise , Anuros/fisiologia , Crioultramicrotomia/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Distribuição Tecidual , Imagem Corporal Total/métodos
11.
Phytochem Anal ; 31(6): 711-721, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32291820

RESUMO

INTRODUCTION: Lauraceae alkaloids are a structurally diverse class of plant specialised secondary metabolites that play an important role in modern pharmacotherapy, being useful as well as model compounds for the development of synthetic analogues. However, alkaloids characterisation is challenging due to low concentrations, the complexity of plant extracts, and long processes for accurate structural determinations. OBJECTIVE: The use of high-performance thin layer chromatography coupled with desorption electrospray ionisation multistage mass spectrometry (HPTLC DESI-MSn ) as a fast tool to identify alkaloids present in Ocotea spixiana extract and evaluate the extract's acaricide activity. METHODS: Ocotea spixiana twigs were extracted by conventional liquid-liquid partitioning. HPTLC analysis of the ethyl acetate extract was performed to separate isobaric alkaloids prior to DESI-MSn analysis, performed from MS3 up to MS7 . The extract's acaricide activity against Rhipicephalus microplus was evaluated by in vitro (larval immersion test) and in silico tests. RESULTS: HPTLC-DESI-MSn analysis was performed to identify a total of 13 aporphine and four benzylisoquinoline-type alkaloids reported for the first time in O. spixiana. In vitro evaluation of the extract and the alkaloid boldine showed significant activity against R. microplus larvae. It was established in silico that boldine had important intermolecular interactions with R. microplus acetylcholinesterase enzyme. CONCLUSION: The present study demonstrated that HPTLC-DESI-MSn is a useful analytical tool to identify isoquinoline alkaloids in plant extracts. The acaricide activity of the O. spixiana ethyl acetate extract can be correlated to the presence of alkaloids.


Assuntos
Acaricidas , Alcaloides , Aporfinas , Benzilisoquinolinas , Ocotea , Acaricidas/farmacologia , Alcaloides/farmacologia , Aporfinas/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
12.
Food Chem ; 310: 125850, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31771915

RESUMO

The study of Brazilian Conilon coffee genotypes with unknown chemical composition and sensory quality is extremely important since these data may contribute to the launching of new coffee cultivars in the international market with high cup quality. The present study aimed to investigate the metabolic profile of 3 genotypes of Conilon and compared them to Robusta Tropical and Arabica coffees, all collected at 3 different levels of ripeness. The extracts were analysed by ESI-LTQ-ORBITRAP, and 11 attributes were evaluated by sensory analysis. To correlate sensory, composition and maturation, chemometric analysis was used. The metabolites trigonelline, caffeine, caffeoylquinic acid and sugars revealed higher concentrations in genotypes 105 and 108. According to the sensorial analysis, genotype 108 showed the highest final score (82), which was even higher than the Arabica coffees. Among the new coffees studied, genotype 108 presented promising characteristics, sparking interest in its national and international commercialization.


Assuntos
Coffea/química , Genótipo , Alcaloides/análise , Brasil , Cafeína/análise , Coffea/genética , Genes de Plantas , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Sementes/química , Espectrometria de Massas por Ionização por Electrospray
13.
J Mass Spectrom ; 54(10): 834-842, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31498519

RESUMO

Recently in Canada and some states of the United States, marijuana (cannabis) has become fully legalized and regulated, for both medical and recreational purposes. This fact is going to make cannabis products such as edibles even more popular than ever before. Therefore, it is assumed that there will be a high demand for analytical methods, which are accurate and sensitive enough to be used in different forensic and pharmaceutical cannabis-related applications. Cannabis derivatives have an extreme range and number of constituents with possible interactions with one another. Thus, this characteristic leads to their vast and highly complex chemistry, which requires robust analytical tools to be able to precisely and accurately quantify and qualify them. We developed and validated an analytical method using desorption electrospray ionization (DESI)-mass spectrometry (MS) to accurately detect, characterize, and quantify cannabinoids and also offer an easy, cost-effective, and reliable technique, which can be performed in a short time for infused edibles in complex matrices such as chocolate. We evaluated a quantitative analysis of tetrahydrocannabinol (THC) in cannabis-infused chocolate with thin-layer chromatography (TLC)-DESI-MS and QuEChERS extraction method. Both techniques of TLC and QuEChERS are cost-effective and can be run in short time.


Assuntos
Cannabis/química , Chocolate/análise , Dronabinol/análise , Cromatografia em Camada Fina/métodos , Dronabinol/análogos & derivados , Humanos , Limite de Detecção , Espectrometria de Massas por Ionização por Electrospray , Detecção do Abuso de Substâncias
14.
Rapid Commun Mass Spectrom ; 33 Suppl 3: 27-53, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29698560

RESUMO

Ambient mass spectrometry (AMS)-based techniques are performed under ambient conditions in which the ionization and desorption occur in the open environment allowing the direct analysis of molecules with minimal or no sample preparation. A selected group of AMS techniques demonstrate imaging capabilities that can provide information about the localization of molecules on complex sample surfaces such as biological tissues. 2D, 3D, and multimodal imaging have unlocked an array of applications to systematically address complex problems in many areas of research such as drug monitoring, natural products, forensics, and cancer diagnostics. In the present review, we summarize recent advances in the field with respect to the implementation of new ambient ionization techniques and current applications in the last 5 years. In more detail, we mainly focus on imaging applications in topics related to animal whole bodies and tissues, single cells, cancer diagnostics and biomarkers, microbial cultures and co-cultures, plant and natural product metabolomics, and forensic applications. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.

15.
Rapid Commun Mass Spectrom ; 31(12): 983-990, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28370721

RESUMO

RATIONALE: Thermochromic ink pens are widely accessible worldwide and have gained popularity among the general public. These pens are very useful to undo mistakes while writing important documents or exams. They are also, however, misused in committing crimes such as counterfeiting checks or wills. Thus, the forensics community is in need of techniques that will allow these forgeries to be detected rapidly, reliably and conveniently. METHODS: Thermochromic ink compounds were investigated using Desorption Electrospray Ionization (DESI) coupled with an LTQ mass spectrometer and Thin-Layer Chromatography (TLC). Tandem mass spectrometric analysis was conducted using Electrospray Ionization (ESI) coupled with an Orbitrap LTQ mass spectrometer performing Collision-Induced Dissociation (CID) for identification of ink traces. RESULTS: Chemical marker ions characteristic of the state of ink (visible or invisible) were identified and mapped in ink traces by the use of DESI-MS imaging. These ions can be employed by forensic experts as fingerprint markers in forged documents. The marker ions were also characterised by conducting tandem mass spectrometry using paper spray in an Orbitrap LTQ mass spectrometer. CONCLUSIONS: Specific chemical components yielding ions of m/z 400, 405, 615 and 786 were distinguished as only being apparent in the invisible and reappeared state of the ink. The absence of these compounds in the original state of the ink enabled their recognition as useful chemical determinants in detecting forgery. DESI-MSI was thus shown to be a very useful, convenient and reliable technique for detecting forgery in paper documents due to its fast and reproducible mode of analysis, with no sample preparation and minimal damage to the document under investigation. Copyright © 2017 John Wiley & Sons, Ltd.

16.
J Am Soc Mass Spectrom ; 28(6): 1136-1148, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27778241

RESUMO

Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish (Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. Graphical Abstract ᅟ.


Assuntos
Líquidos Iônicos/análise , Líquidos Iônicos/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Peixe-Zebra , Animais , Biodegradação Ambiental , Barreira Hematoencefálica/efeitos dos fármacos , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Brânquias/química , Brânquias/efeitos dos fármacos , Líquidos Iônicos/toxicidade , Espectrometria de Massas em Tandem , Distribuição Tecidual , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
17.
Clin Chem ; 62(1): 111-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555455

RESUMO

BACKGROUND: There is a clinical need for new technologies that would enable rapid disease diagnosis based on diagnostic molecular signatures. Ambient ionization mass spectrometry has revolutionized the means by which molecular information can be obtained from tissue samples in real time and with minimal sample pretreatment. New developments in ambient ionization techniques applied to clinical research suggest that ambient ionization mass spectrometry will soon become a routine medical tool for tissue diagnosis. CONTENT: This review summarizes the main developments in ambient ionization techniques applied to tissue analysis, with focus on desorption electrospray ionization mass spectrometry, probe electrospray ionization, touch spray, and rapid evaporative ionization mass spectrometry. We describe their applications to human cancer research and surgical margin evaluation, highlighting integrated approaches tested for ex vivo and in vivo human cancer tissue analysis. We also discuss the challenges for clinical implementation of these tools and offer perspectives on the future of the field. SUMMARY: A variety of studies have showcased the value of ambient ionization mass spectrometry for rapid and accurate cancer diagnosis. Small molecules have been identified as potential diagnostic biomarkers, including metabolites, fatty acids, and glycerophospholipids. Statistical analysis allows tissue discrimination with high accuracy rates (>95%) being common. This young field has challenges to overcome before it is ready to be broadly accepted as a medical tool for cancer diagnosis. Growing research in new, integrated ambient ionization mass spectrometry technologies and the ongoing improvements in the existing tools make this field very promising for future translation into the clinic.


Assuntos
Biomarcadores Tumorais/análise , Técnicas de Laboratório Clínico , Neoplasias/diagnóstico , Neoplasias/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Humanos
18.
Chem Sci ; 7(3): 2162-2169, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155015

RESUMO

While mass spectrometers can detect chemical signatures within milliseconds of data acquisition time, the non-targeted nature of mass spectrometry imaging (MSI) necessitates probing the entire surface of the sample to reveal molecular composition even if the information is only sought from a sample subsection. This leads to long analysis times. Here, we used polarimetry to identify, within a biological tissue, areas of polarimetric heterogeneity indicative of cancer. We were then able to target our MS analysis using polarimetry results to either the cancer region itself or to the cancer margin. A tandem of polarimetry and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) enables fast (10 fold compared to non-targeted imaging), and accurate pathology assessment (cancer typification in less than 2 minutes compared to 30 minutes for histopathology) of ex vivo tissue slices, without additional sample preparation. This workflow reduces the overall analysis time of MSI as a research tool.

19.
Anal Chem ; 87(24): 12298-305, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637047

RESUMO

Direct analysis of microbial cocultures grown on agar media by desorption electrospray ionization mass spectrometry (DESI-MS) is quite challenging. Due to the high gas pressure upon impact with the surface, the desorption mechanism does not allow direct imaging of soft or irregular surfaces. The divots in the agar, created by the high-pressure gas and spray, dramatically change the geometry of the system decreasing the intensity of the signal. In order to overcome this limitation, an imprinting step, in which the chemicals are initially transferred to flat hard surfaces, was coupled to DESI-MS and applied for the first time to fungal cocultures. Note that fungal cocultures are often disadvantageous in direct imaging mass spectrometry. Agar plates of fungi present a complex topography due to the simultaneous presence of dynamic mycelia and spores. One of the most devastating diseases of cocoa trees is caused by fungal phytopathogen Moniliophthora roreri. Strategies for pest management include the application of endophytic fungi, such as Trichoderma harzianum, that act as biocontrol agents by antagonizing M. roreri. However, the complex chemical communication underlying the basis for this phytopathogen-dependent biocontrol is still unknown. In this study, we investigated the metabolic exchange that takes place during the antagonistic interaction between M. roreri and T. harzianum. Using imprint-DESI-MS imaging we annotated the secondary metabolites released when T. harzianum and M. roreri were cultured in isolation and compared these to those produced after 3 weeks of coculture. We identified and localized four phytopathogen-dependent secondary metabolites, including T39 butenolide, harzianolide, and sorbicillinol. In order to verify the reliability of the imprint-DESI-MS imaging data and evaluate the capability of tape imprints to extract fungal metabolites while maintaining their localization, six representative plugs along the entire M. roreri/T. harzianum coculture plate were removed, weighed, extracted, and analyzed by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Our results not only provide a better understanding of M. roreri-dependent metabolic induction in T. harzianum, but may seed novel directions for the advancement of phytopathogen-dependent biocontrol, including the generation of optimized Trichoderma strains against M. roreri, new biopesticides, and biofertilizers.


Assuntos
4-Butirolactona/análogos & derivados , Agaricales/metabolismo , Produtos Biológicos/análise , Produtos Biológicos/metabolismo , Butanos/metabolismo , Cicloexanonas/metabolismo , Lactonas/metabolismo , Metabolismo Secundário , Trichoderma/metabolismo , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/metabolismo , Agaricales/crescimento & desenvolvimento , Agaricales/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Butanos/química , Butanos/isolamento & purificação , Técnicas de Cocultura , Cicloexanonas/química , Cicloexanonas/isolamento & purificação , Lactonas/química , Lactonas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/crescimento & desenvolvimento , Trichoderma/patogenicidade
20.
Anal Chem ; 87(24): 12071-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561279

RESUMO

A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 µm vertical resolution (∼3 µm removal per pulse) and a lateral resolution of ∼100 µm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.


Assuntos
Lasers , Espectrometria de Massas por Ionização por Electrospray , Animais , Raios Infravermelhos , Rim/citologia , Rim/cirurgia , Limite de Detecção , Camundongos , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA