Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Res ; 41(10): 2205-2220, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36961351

RESUMO

Tendons and ligaments have a poor innate healing capacity, yet account for 50% of musculoskeletal injuries in the United States. Full structure and function restoration postinjury remains an unmet clinical need. This study aimed to assess the application of novel three dimensional (3D) printed scaffolds and induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) overexpressing the transcription factor Scleraxis (SCX, iMSCSCX+ ) as a new strategy for tendon defect repair. The polycaprolactone (PCL) scaffolds were fabricated by extrusion through a patterned nozzle or conventional round nozzle. Scaffolds were seeded with iMSCSCX+ and outcomes were assessed in vitro via gene expression analysis and immunofluorescence. In vivo, rat Achilles tendon defects were repaired with iMSCSCX+ -seeded microgrooved scaffolds, microgrooved scaffolds only, or suture only and assessed via gait, gene expression, biomechanical testing, histology, and immunofluorescence. iMSCSCX+ -seeded on microgrooved scaffolds showed upregulation of tendon markers and increased organization and linearity of cells compared to non-patterned scaffolds in vitro. In vivo gait analysis showed improvement in the Scaffold + iMSCSCX+ -treated group compared to the controls. Tensile testing of the tendons demonstrated improved biomechanical properties of the Scaffold + iMSCSCX+ group compared with the controls. Histology and immunofluorescence demonstrated more regular tissue formation in the Scaffold + iMSCSCX+ group. This study demonstrates the potential of 3D-printed scaffolds with cell-instructive surface topography seeded with iMSCSCX+ as an approach to tendon defect repair. Further studies of cell-scaffold constructs can potentially revolutionize tendon reconstruction by advancing the application of 3D printing-based technologies toward patient-specific therapies that improve healing and functional outcomes at both the cellular and tissue level.


Assuntos
Tendão do Calcâneo , Células-Tronco Pluripotentes Induzidas , Ratos , Animais , Tenócitos , Cicatrização , Impressão Tridimensional , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Regeneração
2.
J Stroke Cerebrovasc Dis ; 29(4): 104604, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31932211

RESUMO

BACKGROUND AND PURPOSE: While studies have stratified cardioembolic (CE) stroke risk by qualitative left atrial appendage (LAA) morphology and biomarkers of atrial dysfunction, the quantitative properties that underlie these observations are not well established. Accordingly, we hypothesized that LAA volume and contrast density (attenuation) on computerized tomography (CT) may capture the structural and hemodynamic processes that underlie CE stroke risk. METHODS: Data were collected from a single center prospective ischemic stroke database over 18 months and included all patients with ischemic stroke who previously underwent routine, nongated, contrast enhanced thin-slice (≤2.5 mm) chest CT. Stroke subtype was determined based on the inpatient diagnostic evaluation. LAA volume and attenuation were determined from CT studies performed for various clinically appropriate indications. Univariate and multivariable analyses were performed to determine factors associated with ischemic stroke subtype, including known risk factors and biomarkers, as well as LAA density and morphologic measures. RESULTS: We identified 311 patients with a qualifying chest CT (119 CE subtype, 109 Embolic Stroke of Undetermined Source (ESUS), and 83 non-CE). In unadjusted models, there was an association between CE (versus non-CE) stroke subtype and LAA volume (OR per mL increase 1.15, 95% CI 1.07-1.24, P < .001) and LAA density (4th quartile versus 1st quartile; OR 2.95, 95% CI 1.28-6.80, P = .011), but not with ESUS (versus non-CE) subtype. In adjusted models, only the association between LAA density and CE stroke subtype persisted (adjusted OR 3.71, 95% CI 1.37-10.08, P = .010). CONCLUSION: The LAA volume and density values on chest CT are associated with CE stroke subtype but not ESUS subtype. Patients with ESUS and increased LAA volume or attenuation may be a subgroup where the mechanism is CE and anticoagulation can be tested for secondary stroke prevention.


Assuntos
Apêndice Atrial/diagnóstico por imagem , Embolia/diagnóstico por imagem , Cardiopatias/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Apêndice Atrial/fisiopatologia , Bases de Dados Factuais , Embolia/complicações , Embolia/fisiopatologia , Feminino , Cardiopatias/complicações , Cardiopatias/fisiopatologia , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA