Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 14(1): 8346, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102124

RESUMO

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co1/3TaS2 as the first example of tetrahedral triple-Q magnetic ordering with the associated topological Hall effect (non-zero σxy(H = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-Q state.

2.
Sci Adv ; 9(1): eadd5239, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598989

RESUMO

A large body of knowledge about magnetism is attained from models of interacting spins, which usually reside on magnetic ions. Proposals beyond the ionic picture are uncommon and seldom verified by direct observations in conjunction with microscopic theory. Here, using inelastic neutron scattering to study the itinerant near-ferromagnet MnSi, we find that the system's fundamental magnetic units are interconnected, extended molecular orbitals consisting of three Mn atoms each rather than individual Mn atoms. This result is further corroborated by magnetic Wannier orbitals obtained by ab initio calculations. It contrasts the ionic picture with a concrete example and presents an unexplored regime of the spin waves where the wavelength is comparable to the spatial extent of the molecular orbitals. Our discovery brings important insights into not only the magnetism of MnSi but also a broad range of magnetic quantum materials where structural symmetry, electron itinerancy, and correlations act in concert.

3.
Sci Rep ; 12(1): 20663, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477646

RESUMO

Spin excitation of an ilmenite FeTiO3 powder sample is measured by time-of-flight inelastic neutron scattering. The dynamic magnetic pair-density function DM(r, E) is obtained from the dynamic magnetic structure factor SM(Q, E) by the Fourier transformation. The real space spin dynamics exhibit magnon mode transitions in the spin-spin correlation with increasing energy from no-phase-shift to π-phase-shift. The mode transition is well reproduced by a simulation using the reciprocal space magnon dispersions. This analysis provides a novel opportunity to study the local spin dynamics of various magnetic systems.

4.
Phys Rev Lett ; 129(14): 147202, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240411

RESUMO

Na_{2}Co_{2}TeO_{6} is a proposed approximate Kitaev magnet, yet its actual magnetic interactions are elusive due to a lack of knowledge on the full excitation spectrum. Here, using inelastic neutron scattering and single crystals, we determine the system's temperature-dependent magnetic excitations over the entire Brillouin zone. Without committing to specific models, we unveil a distinct signature of the third-nearest-neighbor coupling in the spin waves, which signifies the associated distance as an emerging effective link in the ordered state. The presence of at least six nonoverlapping spin-wave branches is at odds with all models proposed to date. Above the ordering temperature, persisting dynamic correlations can be described by equal-time magnetic structure factors of a hexagonal cluster, which reveal the leading instabilities. Our result sets definitive constraints on theoretical models for Na_{2}Co_{2}TeO_{6} and provides new insight for the materialization of the Kitaev model.

5.
J Phys Chem Lett ; 13(35): 8228-8235, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031713

RESUMO

Introducing magnetic order into a topological insulator (TI) system has attracted much attention with an expectation of realizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) and axion insulator states. The magnetic proximity effect (MPE) is one of the promising schemes to induce the magnetic order on the surface of a TI without introducing disorder accompanied by doping magnetic impurities in the TI. In this study, we investigate the MPE at the interface of a heterostructure consisting of the topological crystalline insulator (TCI) SnTe and Fe by employing polarized neutron reflectometry. The ferromagnetic order penetrates ∼2.2 nm deep into the SnTe layer from the interface with Fe, which persists up to room temperature. This is induced by the MPE on the surface of the TCI preserving the coherent topological states without introducing the disorder by doping magnetic impurities. This would open up a way for realizing next-generation spintronics and quantum computational devices.

6.
Environ Res ; 205: 112416, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808126

RESUMO

Although the treatment of municipal wastewater using microbial fuel cells (MFCs) has been extensively studied, scaling the systems up for practical use remains challenging. In this study, a 226 L sewage treatment reactor was equipped with 27 MFC units, and its chemical oxygen demand (COD) removal and electricity production were evaluated. The MFC units were tubular air cores with a diameter of 5 cm and length of 100 cm, which were wrapped with a carbon-based cathode, anion exchange membrane (AEM), and nonwoven graphite fabric. The air-cathode-AEM MFC generated 0.12-0.30 A/m2, 0.072-0.51 W/m3, and 1.7-4.6 Wh/m3 in a chemostat reactor with a COD of 140-36 mg/L and hydraulic retention time (HRT) of 9-42 h throughout a year. The decrease in the COD was represented as the first-order rate constant of 0.038. The rate constant was comparable to that of other air-cathode MFCs with cation exchange membranes, indicating the necessity of a posttreatment to meet the discharge standard. It has been estimated that the MFC operation for 24 h before post-aeration can reduce the energy required to meet the discharge standard by 70%, suggesting the potential applicability of MFC in long HRT-treatments such as oxidation ditch. The resistances of the anode, cathode, and AEM were 15, 7.0, and 0.51 mΩ m2, respectively, and surface dirt rather than deterioration primarily increased the AEM resistance. A current exceeding 0.2 A/m2 significantly increases the anode potential, indicating that the current was limited by low COD. Increasing the anode-specific surface area can improve air-AEM MFCs used for practical applications.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Ânions , Eletricidade , Eletrodos , Águas Residuárias
7.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493664

RESUMO

Magnetic superconductors are specific materials exhibiting two antagonistic phenomena, superconductivity and magnetism, whose mutual interaction induces various emergent phenomena, such as the reentrant superconducting transition associated with the suppression of superconductivity around the magnetic transition temperature (T m), highlighting the impact of magnetism on superconductivity. In this study, we report the experimental observation of the ferromagnetic order induced by superconducting vortices in the high-critical-temperature (high-T c) magnetic superconductor EuRbFe4As4 Although the ground state of the Eu2+ moments in EuRbFe4As4 is helimagnetism below T m, neutron diffraction and magnetization experiments show a ferromagnetic hysteresis of the Eu2+ spin alignment. We demonstrate that the direction of the Eu2+ moments is dominated by the distribution of pinned vortices based on the critical state model. Moreover, we demonstrate the manipulation of spin texture by controlling the direction of superconducting vortices, which can help realize spin manipulation devices using magnetic superconductors.

8.
ACS Omega ; 6(24): 16043-16048, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179649

RESUMO

The development of shape-controlled noble metal nanocrystals such as nanowires (NWs) is progressing steadily owing to their potentially novel catalytic properties and the ease with which they can be prepared by reducing the metal ions in a particular solution as capping agents. Recently, many reports have been presented on the preparation of shape-controlled Au nanocrystals, such as nanostars and nanoflowers, by a one-pot method using 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES) as capping and reducing agents. The catalytic activity is depressed due to the adsorption of the capping agent onto a Au surface. Since HEPES has low binding affinities on the Au surface, shape-controlled nanocrystals obtained using HEPES are effective for application as nanocatalysts because HEPES was easily removed from the Au surface. In this study, we report the preparation of AuNWs, with an average diameter of 7.7 nm and lengths of a few hundred nanometers, in an aqueous solution containing HEPES and sodium borohydride. A γ-Al2O3-supported AuNW (AuNW/γ-Al2O3) catalyst was obtained using catalytic supporters and a water extraction method that removed HEPES from the Au surface without morphological changes. AuNW/γ-Al2O3 was then utilized to catalyze the oxidation of 1-phenylethyl alcohol to acetophenone. The formation rate of acetophenone over AuNW/γ-Al2O3 was 3.2 times that over γ-Al2O3-supported spherical Au nanoparticles (AuNP/γ-Al2O3) with almost the same diameter.

9.
Nat Commun ; 12(1): 2306, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863905

RESUMO

Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.

10.
Phys Rev Lett ; 122(1): 017001, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012685

RESUMO

With spin-orbit coupling, both local-moment magnetism and itinerant electrons are expected to behave anisotropically in spin space, but such effects' influence on the formation of unconventional superconductivity has been hitherto unexplored. Here, in an iron-based superconductor, Sr_{1-x}Na_{x}Fe_{2}As_{2}, we report spectroscopic evidence that itinerant electrons "prefer" to be assisted by c-axis polarized magnetic excitations in their formation of superconducting Cooper pairs, against the polarization of the local-moment excitations. Our result naturally explains why the superconductivity competes strongly with the tetragonal magnetic phase in this material, and provides a fresh view on how to make a good superconductor out of a magnetic "Hund's metal."

12.
Sci Rep ; 9(1): 1826, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755692

RESUMO

Molecular based spin-1/2 triangular lattice systems such as LiZn2Mo3O8 have attracted research interest. Distortions, defects, and intersite disorder are suppressed in such molecular-based magnets, and intrinsic geometrical frustration gives rise to unconventional and unexpected ground states. Li2AMo3O8 (A = In or Sc) is such a compound where spin-1/2 Mo3O13 clusters in place of Mo ions form the uniform triangular lattice. Their ground states are different according to the A site. Li2InMo3O8 undergoes conventional 120° long-range magnetic order below TN = 12 K whereas isomorphic Li2ScMo3O8 exhibits no long-range magnetic order down to 0.5 K. Here, we report exotic magnetisms in Li2InMo3O8 and Li2ScMo3O8 investigated by muon spin rotation (µSR) and inelastic neutron scattering (INS) spectroscopies using polycrystalline samples. Li2InMo3O8 and Li2ScMo3O8 show completely different behaviors observed in both µSR and INS measurements, representing their different ground states. Li2InMo3O8 exhibits spin wave excitation which is quantitatively described by the nearest neighbor anisotropic Heisenberg model based on the 120° spin structure. In contrast, Li2ScMo3O8 undergoes short-range magnetic order below 4 K with quantum-spin-liquid-like magnetic fluctuations down to the base temperature. Origin of the different ground states is discussed in terms of anisotropies of crystal structures and magnetic interactions.

13.
RSC Adv ; 9(67): 39348-39354, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540661

RESUMO

The oxidation of a carbon anode has been reported to enhance electricity recovery in a microbial fuel cell (MFC). This study investigates the applicability of electrochemically oxidized graphite felt (EOGF) as the anode for the recovery of electricity from sewage wastewater when polarized at 0.2 V during MFC operation. EOGFs were prepared by polarizing graphite felt (GF) at 2 V in 1% sulfuric acid or nitric acid. The nitric acid-treated EOGF inoculated with an sewage sludge produced a maximum current of 110 µA cm-3, which exceeds that produced by the original GF (91 µA cm-3) under electrochemical cultivation at 0.2 V vs. Ag/AgCl. This outcome is attributed to a decrease in charge-transfer resistance and an increase in the capacitance of the anode. In contrast, electrochemical oxidation did not affect the chemical oxygen demand (COD) removal rate or the microbial community structure of the anode. The MFC equipped with the EOGF delivered 340-560 mW m-3-MFC of electricity during operation in the drainage water channel of a primary sedimentation tank, which corresponds to 11-15 µA cm-3 of current density. The lower current produced in the MFC compared to that observed during electrochemical cultivation indicates that factors other than the anode material restrict current production in the MFC. Even with the small amount of generated electricity, when operated for more than three days, the MFC provides a positive net energy balance when integrated with post-aeration treatment.

14.
J Bone Miner Metab ; 37(3): 467-474, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30187276

RESUMO

The central nervous system in adult mammals does not heal spontaneously after spinal cord injury (SCI). However, SCI treatment has been improved recently following the development of cell transplantation therapy. We recently reported that fibroblast growth factor (FGF) 2-pretreated human dental pulp cells (hDPCs) can improve recovery in a rat model of SCI. This study aimed to investigate mechanisms underlying the curative effect of SCI enhanced via FGF2 pretreatment; we selected three hDPC lines upon screening for the presence of mesenchymal stem cell markers and of their functionality in a rat model of SCI, as assessed using the Basso, Beattie, and Bresnahan score of locomotor functional scale, electrophysiological tests, and morphological analyses. We identified FGF2-responsive genes via gene expression analyses in these lines. FGF2 treatment upregulated GABRB1, MMP1, and DRD2, which suggested to contribute to SCI or central the nervous system. In an expanded screening of additional lines, GABRB1 displayed rather unique and interesting behavior; two lines with the lowest sensitivity of GABRB1 to FGF2 treatment displayed an extremely minor effect in the SCI model. These findings provide insights into the role of FGF2-responsive genes, especially GABRB1, in recovery from SCI, using hDPCs treated with FGF2.


Assuntos
Polpa Dentária/citologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia
15.
Biochem Biophys Res Commun ; 493(1): 514-520, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867196

RESUMO

Despite the development of new drugs for multiple myeloma (MM), the prognosis of MM patients with high-risk cytogenetic abnormalities such as t (4; 14) and del17p remains poor. We reported that a novel phenylphthalimide derivative, TC11, induced apoptosis of MM cells in vitro and in vivo, and TC11 directly bound to α-tubulin and nucleophosmin-1 (NPM1). However, TC11 showed low water solubility and poor pharmacokinetic properties. Here we synthesized a water-soluble TC11-derivative, PEG(E)-TC11, in which HOEtO-TC11 is pegylated with PEG through an ester bond, and we examined its anti-myeloma activity. We observed that PEG(E)-TC11 and its hydrolyzed product, HOEtO-TC11, induced G2/M arrest and the apoptosis of MM cells. Intraperitoneal administration of PEG(E)-TC11 to xenografted mice revealed improved pharmacokinetic properties and significantly delayed tumor growth. TC11 and its derivatives did not bind to cereblon (CRBN), which is a responsible molecule for thalidomide-induced teratogenicity. These results suggest that PEG(E)-TC11 is a good candidate drug for treating high-risk MM.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Ftalimidas/administração & dosagem , Ftalimidas/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Composição de Medicamentos/métodos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Mieloma Múltiplo/patologia , Nucleofosmina , Ftalimidas/química , Polietilenoglicóis/química , Fatores de Risco , Resultado do Tratamento
17.
Materials (Basel) ; 9(9)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28773862

RESUMO

Graphene oxide (GO) has recently been shown to be an excellent anode substrate for exoelectrogens. This study demonstrates the applicability of GO in recovering electricity from sewage wastewater. Anaerobic incubation of sludge with GO formed a hydrogel complex that embeds microbial cells via π-π stacking of microbially reduced GO. The rGO complex was electrically conductive (23 mS·cm-1) and immediately produced electricity in sewage wastewater under polarization at +200 mV vs. Ag/AgCl. Higher and more stable production of electricity was observed with rGO complexes (179-310 µA·cm-3) than with graphite felt (GF; 79-95 µA·cm-3). Electrochemical analyses revealed that this finding was attributable to the greater capacitance and smaller internal resistance of the rGO complex. Microbial community analysis showed abundances of Geobacter species in both rGO and GF complexes, whereas more diverse candidate exoelectrogens in the Desulfarculaceae family and Geothrix genus were particularly prominent in the rGO complex.

18.
Proc Natl Acad Sci U S A ; 112(37): 11519-23, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324917

RESUMO

Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.

19.
In Vitro Cell Dev Biol Anim ; 51(10): 1012-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26170225

RESUMO

Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies.


Assuntos
Rastreamento de Células/métodos , Polpa Dentária/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia , Animais , Células da Medula Óssea/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular , Polpa Dentária/fisiologia , Dextranos , Cães , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanopartículas Metálicas , Fatores de Crescimento Neural/genética , Neuritos/fisiologia , Células PC12 , Imagens de Fantasmas , Ratos
20.
Neurosci Lett ; 589: 92-7, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25597290

RESUMO

The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment. As results, NGF, but not BDNF and NT-3, in DPCs was significantly elevated by the propolis in a concentration-dependent manner. H2O2-induced cell death was significantly inhibited by the treatment with the CM of DPCs. In addition, the treatment with the propolis-stimulated CM of DPCs had a more protective effect than that with the CM of DPCs. We also examine the effect of the propolis-stimulated CM of DPCs against a tunicamycin-induced ER stress. The treatment with the propolis-stimulated CM as well as the CM of DPCs significantly inhibited tunicamycin-induced cell death. Moreover, the treatment with the propolis-stimulated CM of DPCs significantly induced neurite outgrowth from PC12 cells than that with the CM of DPCs. These results suggest that the CM of DPCs as well as DPCs will be an efficient source of new treatments for neurodegenerative diseases and that the propolis promote the advantage of the CM of DPCs via producing neurotrophic factors.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Polpa Dentária/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Própole/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Cães , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Fator de Crescimento Neural/metabolismo , Neuritos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA