Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Sci Rep ; 14(1): 8346, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594484

RESUMO

Nest-building behavior is a widely observed innate behavior. A nest provides animals with a secure environment for parenting, sleep, feeding, reproduction, and temperature maintenance. Since animal infants spend their time in a nest, nest-building behavior has been generally studied as parental behaviors, and the medial preoptic area (MPOA) neurons are known to be involved in parental nest-building. However, nest-building of singly housed male mice has been less examined. Here we show that male mice spent longer time in nest-building at the early to middle dark phase and at the end of the dark phase. These two periods are followed by sleep-rich periods. When a nest was removed and fresh nest material was introduced, both male and female mice built nests at Zeitgeber time (ZT) 6, but not at ZT12. Using Fos-immunostaining combined with double in situ hybridization of Vgat and Vglut2, we found that Vgat- and Vglut2-positive cells of the lateral preoptic area (LPOA) were the only hypothalamic neuron population that exhibited a greater number of activated cells in response to fresh nest material at ZT6, compared to being naturally awake at ZT12. Fos-positive LPOA neurons were negative for estrogen receptor 1 (Esr1). Both Vgat-positive and Vglut2-positive neurons in both the LPOA and MPOA were activated at pup retrieval by male mice. Our findings suggest the possibility that GABAergic and glutamatergic neurons in the LPOA are associated with nest-building behavior in male mice.


Assuntos
Hipotálamo , Área Pré-Óptica , Humanos , Camundongos , Masculino , Feminino , Animais , Hipotálamo/fisiologia , Área Pré-Óptica/fisiologia , Neurônios/fisiologia
2.
PLoS Comput Biol ; 20(3): e1011848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489379

RESUMO

The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Junções Comunicantes/fisiologia , Caenorhabditis elegans/fisiologia , Neuroimagem , Modelos Neurológicos
3.
Proc Natl Acad Sci U S A ; 121(5): e2310735121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252838

RESUMO

Animals navigate their environment by manipulating their movements and adjusting their trajectory which requires a sophisticated integration of sensory data with their current motor status. Here, we utilize the nematode Caenorhabditis elegans to explore the neural mechanisms of processing the sensory and motor information for navigation. We developed a microfluidic device which allows animals to freely move their heads while receiving temporal NaCl stimuli. We found that C. elegans regulates neck bending direction in response to temporal NaCl concentration changes in a way which is consistent with a C. elegans' navigational strategy which regulates traveling direction toward preferred NaCl concentrations. Our analysis also revealed that the activity of a neck motor neuron is significantly correlated with neck bending and activated by the decrease in NaCl concentration in a phase-dependent manner. By combining the analysis of behavioral and neural response to NaCl stimuli and optogenetic perturbation experiments, we revealed that NaCl decrease during ventral bending activates the neck motor neuron which counteracts ipsilateral bending. Simulations further suggest that this phase-dependent response of neck motor neurons can facilitate curving toward preferred salt concentrations.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Cloreto de Sódio , Animais , Caenorhabditis elegans , Cloreto de Sódio na Dieta , Neurônios Motores
4.
PLoS Genet ; 19(9): e1010637, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669262

RESUMO

The nematode Caenorhabditis elegans memorizes various external chemicals, such as ions and odorants, during feeding. Here we find that C. elegans is attracted to the monosaccharides glucose and fructose after exposure to these monosaccharides in the presence of food; however, it avoids them without conditioning. The attraction to glucose requires a gustatory neuron called ASEL. ASEL activity increases when glucose concentration decreases. Optogenetic ASEL stimulation promotes forward movements; however, after glucose conditioning, it promotes turning, suggesting that after glucose conditioning, the behavioral output of ASEL activation switches toward glucose. We previously reported that chemotaxis toward sodium ion (Na+), which is sensed by ASEL, increases after Na+ conditioning in the presence of food. Interestingly, glucose conditioning decreases Na+ chemotaxis, and conversely, Na+ conditioning decreases glucose chemotaxis, suggesting the reciprocal inhibition of learned chemotaxis to distinct chemicals. The activation of PKC-1, an nPKC ε/η ortholog, in ASEL promotes glucose chemotaxis and decreases Na+ chemotaxis after glucose conditioning. Furthermore, genetic screening identified ENSA-1, an ortholog of the protein phosphatase inhibitor ARPP-16/19, which functions in parallel with PKC-1 in glucose-induced chemotactic learning toward distinct chemicals. These findings suggest that kinase-phosphatase signaling regulates the balance between learned behaviors based on glucose conditioning in ASEL, which might contribute to migration toward chemical compositions where the animals were previously fed.


Assuntos
Caenorhabditis elegans , Açúcares , Animais , Caenorhabditis elegans/genética , Quimiotaxia , Cloreto de Sódio , Glucose/farmacologia , Monossacarídeos
5.
BMC Bioinformatics ; 24(1): 254, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328814

RESUMO

BACKGROUND: In the field of neuroscience, neural modules and circuits that control biological functions have been found throughout entire neural networks. Correlations in neural activity can be used to identify such neural modules. Recent technological advances enable us to measure whole-brain neural activity with single-cell resolution in several species including [Formula: see text]. Because current neural activity data in C. elegans contain many missing data points, it is necessary to merge results from as many animals as possible to obtain more reliable functional modules. RESULTS: In this work, we developed a new time-series clustering method, WormTensor, to identify functional modules using whole-brain activity data from C. elegans. WormTensor uses a distance measure, modified shape-based distance to account for the lags and the mutual inhibition of cell-cell interactions and applies the tensor decomposition algorithm multi-view clustering based on matrix integration using the higher orthogonal iteration of tensors (HOOI) algorithm (MC-MI-HOOI), which can estimate both the weight to account for the reliability of data from each animal and the clusters that are common across animals. CONCLUSION: We applied the method to 24 individual C. elegans and successfully found some known functional modules. Compared with a widely used consensus clustering method to aggregate multiple clustering results, WormTensor showed higher silhouette coefficients. Our simulation also showed that WormTensor is robust to contamination from noisy data. WormTensor is freely available as an R/CRAN package https://cran.r-project.org/web/packages/WormTensor .


Assuntos
Encéfalo , Caenorhabditis elegans , Animais , Reprodutibilidade dos Testes , Algoritmos , Análise por Conglomerados
6.
G3 (Bethesda) ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37310929

RESUMO

Animals are able to adapt their behaviors to the environment. In order to achieve this, the nervous system plays integrative roles, such as perception of external signals, sensory processing, and behavioral regulations via various signal transduction pathways. Here genetic analyses of Caenorhabditis elegans (C. elegans) found that mutants of components of JNK and p38 mitogen-activated protein kinase (MAPK) signaling pathways, also known as stress-activated protein kinase (SAPK) signaling pathways, exhibit various types of defects in the learning of salt chemotaxis. C. elegans homologs of JNK MAPKKK and MAPKK, MLK-1 and MEK-1, respectively, are required for avoidance of salt concentrations experienced during starvation. In contrast, homologs of p38 MAPKKK and MAPKK, NSY-1 and SEK-1, respectively, are required for high-salt chemotaxis after conditioning. Genetic interaction analyses suggest that a JNK family MAPK, KGB-1, functions downstream of both signaling pathways to regulate salt chemotaxis learning. Furthermore, we found that the NSY-1/SEK-1 pathway functions in sensory neurons, ASH, ADF, and ASER, to regulate the learned high-salt chemotaxis. A neuropeptide, NLP-3, expressed in ASH, ADF, and ASER neurons, and a neuropeptide receptor, NPR-15, expressed in AIA interneurons that receive synaptic input from these sensory neurons, function in the same genetic pathway as NSY-1/SEK-1 signaling. These findings suggest that this MAPK pathway may affect neuropeptide signaling between sensory neurons and interneurons, thus promoting high-salt chemotaxis after conditioning.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia/fisiologia , Sistema de Sinalização das MAP Quinases , Transdução de Sinais/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Cloreto de Sódio/metabolismo , MAP Quinase Quinase Quinases , Células Receptoras Sensoriais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
7.
Neurosci Res ; 186: 33-42, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252701

RESUMO

Memory-related neuronal responses are often elicited by sensory stimuli that recapitulate previous experience. Despite the importance of this sensory input processing, its underlying mechanisms remain poorly understood. Caenorhabditis elegans chemotax towards salt concentrations experienced in the presence of food. The amphid sensory neurons ASE-left and ASE-right respond to increases and decreases of ambient salt concentration in opposite manners. AIA, AIB and AIY interneurons are post-synaptic to the ASE pair and are thought to be involved in the processing of salt information transmitted from ASE. However, it remains elusive how the responses of these interneurons are regulated by stimulus patterns. Here we show that AIY interneurons display an experience-dependent response to gradual salt concentration changes but not to abrupt stepwise concentration changes. Animals with AIY intact (but AIA and AIB ablated) chemotax towards low salt concentrations similarly to wild-type animals after cultivation with low salt. ASE neurons transmit salt information about the environment through glutamatergic signaling, directing the activity of the interneurons AIY that promote movement towards favorable conditions.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Ácido Glutâmico , Interneurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Cloreto de Sódio
8.
Breast Cancer ; 30(1): 131-138, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36175750

RESUMO

BACKGROUND: Breast-conserving surgery with radiotherapy is one of standard treatments for early breast cancer. However, it is regarded as an option to treat elderly patients with small hormone receptor-positive breast cancer with breast-conserving surgery and hormone therapy without radiotherapy. We conducted two sequential prospective studies to examine the feasibility of breast-conserving surgery without radiotherapy since 2002 and present the results. PATIENTS AND METHODS: Primary female breast cancer patients who fulfilled the strict eligibility criteria were prospectively enrolled in two sequential studies named WORTH 1 and 2. The surgical materials were sliced in 5-mm intervals and all slices were examined microscopically. Postoperative radiotherapy was not allowed, but tamoxifen or anastrozole was administered for 5 years. Ipsilateral breast tumor recurrence (IBTR)-free survival was the primary outcome. RESULTS: The data of the two studies were combined (N = 321). The median follow-up period for IBTR was 94 months (4-192 months). Only three patients were treated with adjuvant chemotherapy. The 5- and 10-year IBTR-free rates were 97.0% and 90.5%, respectively. The age at operation and PR status affected IBTR rates independently. When we calculated IBTR-free rates of patients who were 65 years of age or older at the time of surgery and had PR-positive tumors, the 5- and 10-year IBTR rates were both 98.4%. CONCLUSIONS:  Our "5-mm-thick slice and 5-mm free-margin" method may be effective to select patients who can be treated by breast-conserving surgery and hormone therapy without radiotherapy.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Idoso , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mastectomia Segmentar , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/prevenção & controle , Estudos Prospectivos , Radioterapia Adjuvante , Hormônios
9.
Cell Rep ; 41(8): 111685, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417877

RESUMO

Insulin/insulin-like growth factor (IGF) receptor signaling (IIS) supports context-dependent learning in vertebrates and invertebrates. Here, we identify cell-specific mechanisms of IIS that integrate sensory information with food context to drive synaptic plasticity and learning. In the nematode Caenorhabditis elegans, pairing food deprivation with an odor such as butanone suppresses attraction to that odor. We find that aversive olfactory learning requires the insulin receptor substrate (IRS) protein IST-1 and atypical signaling through the insulin/IGF-1 receptor DAF-2. Cell-specific knockout and rescue demonstrate that DAF-2 acts in the AWCON sensory neuron, which detects butanone, and that learning preferentially depends upon the axonally localized DAF-2c isoform. Acute food deprivation increases DAF-2 levels in AWCON post-transcriptionally through an insulin- and insulin receptor substrate-1 (ist-1)-dependent process. Aversive learning alters the synaptic output of AWCON by suppressing odor-regulated glutamate release in wild-type animals, but not in ist-1 mutants, suggesting that axonal insulin signaling regulates synaptic transmission to support aversive memory.


Assuntos
Proteínas de Caenorhabditis elegans , Somatomedinas , Animais , Insulina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Glutâmico , Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriais/metabolismo , Butanonas
10.
Nat Commun ; 13(1): 2928, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624091

RESUMO

Animals navigate toward favorable locations using various environmental cues. However, the mechanism of how the goal information is encoded and decoded to generate migration toward the appropriate direction has not been clarified. Here, we describe the mechanism of migration towards a learned concentration of NaCl in Caenorhabditis elegans. In the salt-sensing neuron ASER, the difference between the experienced and currently perceived NaCl concentration is encoded as phosphorylation at Ser65 of UNC-64/Syntaxin 1 A through the protein kinase C(PKC-1) signaling pathway. The phosphorylation affects basal glutamate transmission from ASER, inducing the reversal of the postsynaptic response of reorientation-initiating neurons (i.e., from inhibitory to excitatory), guiding the animals toward the experienced concentration. This process, the decoding of the context, is achieved through the differential sensitivity of postsynaptic excitatory and inhibitory receptors. Our results reveal the mechanism of migration based on the synaptic plasticity that conceptually differs from the classical ones.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia/fisiologia , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta , Sintaxina 1/metabolismo
11.
Mol Brain ; 15(1): 23, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279170

RESUMO

Calsyntenins (CLSTNs) are important synaptic molecules whose molecular functions are not fully understood. Although mutations in calsyntenin (CLSTN) genes have been associated with psychiatric disorders in humans, their function is still unclear. One of the reasons why the function of CLSTNs in the nervous system has not been clarified is the functional redundancy among the three paralogs. Therefore, to investigate the functions of mammalian CLSTNs, we generated triple knockout (TKO) mice lacking all CLSTN paralogs and examined their behavior. The mutant mice tended to freeze in novel environments and exhibited hypersensitivity to stress. Consistent with this, glucose levels under stress were significantly higher in the mutant mice than in the wild-type controls. In particular, phenotypes such as decreased motivation, which had not been reported in single Clstn KO mice, were newly discovered. The TKO mice generated in this study represent an important mouse model for clarifying the function of CLSTN in the future.


Assuntos
Interneurônios , Proteínas de Membrana , Animais , Humanos , Mamíferos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fenótipo
12.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176147

RESUMO

The ubiquitin-proteasome system is associated with various phenomena including learning and memory. In this study, we report that E3 ubiquitin ligase homologs and proteasome function are involved in taste avoidance learning, a type of associative learning between starvation and salt concentrations, in Caenorhabditis elegans. Pharmacological inhibition of proteasome function using bortezomib causes severe defects in taste avoidance learning. Among 9 HECT-type ubiquitin ligase genes, loss-of-function mutations of 6 ubiquitin ligase genes cause significant abnormalities in taste avoidance learning. Double mutations of those genes cause lethality or enhanced defects in taste avoidance learning, suggesting that the HECT-type ubiquitin ligases act in multiple pathways in the processes of learning. Furthermore, mutations of the ubiquitin ligase genes cause additive effects on taste avoidance learning defects of the insulin-like signaling mutants. Our findings unveil the consequences of aberrant functions of the proteasome and ubiquitin systems in learning behavior of Caenorhabditis elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Commun Biol ; 5(1): 30, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017611

RESUMO

Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c-Akt signaling promotes high-salt avoidance via a decrease in PLCß activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Receptor de Insulina , Paladar , Fosfolipases Tipo C , Animais , Aprendizagem da Esquiva , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/genética , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Inanição , Paladar/genética , Paladar/fisiologia , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027448

RESUMO

The nematode Caenorhabditis elegans learns the concentration of NaCl and moves toward the previously experienced concentration. In this behavior, the history of NaCl concentration change is reflected in the level of diacylglycerol and the activity of protein kinase C, PKC-1, in the gustatory sensory neuron ASER and determines the direction of migration. Here, through a genetic screen, we found that the activation of Gq protein compensates for the behavioral defect of the loss-of-function mutant of pkc-1 We found that Gq activation results in hyperproduction of diacylglycerol in ASER sensory neuron, which leads to recruitment of TPA-1, an nPKC isotype closely related to PKC-1. Unlike the pkc-1 mutants, loss of tpa-1 did not obviously affect migration directions in the conventional learning assay. This difference was suggested to be due to cooperative functions of the C1 and C2-like domains of the nPKC isotypes. Furthermore, we investigated how the compensatory capability of tpa-1 contributes to learning and found that learning was less robust in the context of cognitive decline or environmental perturbation in tpa-1 mutants. These results highlight how two nPKC isotypes contribute to the learning system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Aprendizagem/fisiologia , Proteína Quinase C/metabolismo , Cloreto de Sódio/metabolismo , Animais , Caenorhabditis elegans/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Mutação , Proteína Quinase C/genética , Células Receptoras Sensoriais , Transdução de Sinais/fisiologia
15.
Neural Netw ; 145: 107-120, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735889

RESUMO

It is one of the ultimate goals of ethology to understand the generative process of animal behavior, and the ability to reproduce and control behavior is an important step in this field. However, it is not easy to achieve this goal in systems with complex and stochastic dynamics such as animal behavior. In this study, we have shown that MDN-RNN,a type of probabilistic deep generative model, is able to reproduce stochastic animal behavior with high accuracy by modeling the behavior of C. elegans. Furthermore, we found that the model learns different dynamics in a disentangled representation as a time-evolving Gaussian mixture. Finally, by combining the model and reinforcement learning, we were able to extract a behavioral policy of goal-directed behavior in silico, and showed that it can be used for regulating the behavior of real animals. This set of methods will be applicable not only to animal behavior but also to broader areas such as neuroscience and robotics.


Assuntos
Caenorhabditis elegans , Redes Neurais de Computação , Animais , Comportamento Animal , Aprendizagem , Modelos Estatísticos
16.
STAR Protoc ; 2(4): 101011, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917983

RESUMO

To reveal the neural mechanisms that control animal behavior, it is necessary to link the neural responses to behavioral changes and interpret them. We have developed a protocol to simultaneously record the behavior and neural activity of freely moving C. elegans by combining a microfluidic device and a tracking stage. Here we detail the protocol for the experiment, with an example of behavioral and neural responses of nematodes to salt concentration changes. For complete details on the use and execution of this protocol, please refer to Sato et al. (2021).


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Imagem Molecular , Cloreto de Sódio/farmacologia
17.
Sci Rep ; 11(1): 13737, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215774

RESUMO

Caenorhabditis elegans (C. elegans) can produce various motion patterns despite having only 69 motor neurons and 95 muscle cells. Previous studies successfully elucidate the connectome and role of the respective motor neuron classes related to movement. However, these models have not analyzed the distribution of the synaptic and gap connection weights. In this study, we examined whether a motor neuron and muscle network can generate oscillations for both forward and backward movement and analyzed the distribution of the trained synaptic and gap connection weights through a machine learning approach. This paper presents a connectome-based neural network model consisting of motor neurons of classes A, B, D, AS, and muscle, considering both synaptic and gap connections. A supervised learning method called backpropagation through time was adapted to train the connection parameters by feeding teacher data composed of the command neuron input and muscle cell activation. Simulation results confirmed that the motor neuron circuit could generate oscillations with different phase patterns corresponding to forward and backward movement, and could be switched at arbitrary times according to the binary inputs simulating the output of command neurons. Subsequently, we confirmed that the trained synaptic and gap connection weights followed a Boltzmann-type distribution. It should be noted that the proposed model can be trained to reproduce the activity patterns measured for an animal (HRB4 strain). Therefore, the supervised learning approach adopted in this study may allow further analysis of complex activity patterns associated with movements.


Assuntos
Conectoma , Locomoção/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Simulação por Computador , Modelos Neurológicos , Células Musculares/fisiologia
18.
Cell Rep ; 35(8): 109177, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038738

RESUMO

Orientation and navigation behaviors of animals are modulated by past experiences. However, little is known about the mechanisms by which sensory inputs are translated into multi-directional orientation behaviors in an experience-dependent manner. Here, we report a neural mechanism for bidirectional salt-concentration chemotaxis of Caenorhabditis elegans. The salt-sensing neuron ASE right (ASER) is always activated by a decrease of salt concentration, while the directionality of reorientation behaviors is inverted depending on previous salt experiences. AIB, the interneuron postsynaptic to ASER, and neurons farther downstream of AIB show experience-dependent bidirectional responses, which are correlated with reorientation behaviors. These bidirectional behavioral and neural responses are mediated by glutamate released from ASER. Glutamate acts through the excitatory glutamate receptor GLR-1 and inhibitory glutamate receptor AVR-14, both acting in AIB. These findings suggest that experience-dependent reorientation behaviors are generated by altering the magnitude of excitatory and inhibitory postsynaptic signals from a sensory neuron to interneurons.


Assuntos
Glutamatos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Caenorhabditis elegans , Transdução de Sinais
19.
Elife ; 102021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33492228

RESUMO

The ability of animals to process dynamic sensory information facilitates foraging in an ever-changing environment. However, molecular and neural mechanisms underlying such ability remain elusive. The ClC anion channels/transporters play a pivotal role in cellular ion homeostasis across all phyla. Here, we find a ClC chloride channel is involved in salt concentration chemotaxis of Caenorhabditis elegans. Genetic screening identified two altered-function mutations of clh-1 that disrupt experience-dependent salt chemotaxis. Using genetically encoded fluorescent sensors, we demonstrate that CLH-1 contributes to regulation of intracellular anion and calcium dynamics of salt-sensing neuron, ASER. The mutant CLH-1 reduced responsiveness of ASER to salt stimuli in terms of both temporal resolution and intensity, which disrupted navigation strategies for approaching preferred salt concentrations. Furthermore, other ClC genes appeared to act redundantly in salt chemotaxis. These findings provide insights into the regulatory mechanism of neuronal responsivity by ClCs that contribute to modulation of navigation behavior.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Quimiotaxia/genética , Canais de Cloreto/genética , Cloreto de Sódio/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Cloreto/metabolismo , Comportamento Alimentar , Transdução de Sinais
20.
Front Pharmacol ; 12: 802701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046825

RESUMO

Addiction has become a profound societal problem worldwide, and few effective treatments are available. The nematode Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study neurobiological disease states. C. elegans reportedly developed a preference for cues that had previously been paired with addictive drugs, similar to place conditioning findings in rodents. Moreover, several recent studies discovered and reported the existence of an opioid-like system in C. elegans. Still unclear, however, is whether C. elegans exhibits addictive-like behaviors for opioids, such as morphine. In the present study, we found that C. elegans exhibited dose-dependent preference for morphine using the conditioned chemosensory-cue preference (CCP) test. This preference was blocked by co-treatment with the opioid receptor antagonist naloxone. C. elegans also exhibited aversion to naloxone-precipitated withdrawal from chronic morphine exposure. The expression of morphine-induced CCP and morphine withdrawal were abolished in worms that lacked the opioid-like receptor NPR-17. Dopamine-deficient mutant (cat-2 (e1112)) worms also did not exhibit morphine-induced CCP. These results indicate that the addictive function of the opioid system exists in C. elegans, which may serve as a useful model of opioid addiction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA