Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechniques ; 73(6): 297-305, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36475496

RESUMO

Since the isolation of adenovirus (AdV) in 1953, AdVs have been used as vectors for various therapeutic purposes, such as gene therapy in cancers and other malignancies, vaccine development and delivery of CRISPR-Cas9 machinery. Over the years, several AdV vector modifications have been introduced, including fiber switching, incorporation of ligands in the viral capsid and hexon modification of the fiber, to improve the efficiency of AdV as a vector. CRISPR-Cas9 has recently been used for these modifications and is also used in other adeno-associated viruses. These modifications further allow the production of AdV libraries that display random peptides for the production of cancer-targeting AdV vectors. This review focuses on the common methods of AdV construction, changes in AdV tropism for the improvement of therapeutic efficiency and the role of AdV vectors in gene therapy, vaccine development and CRISPR-Cas9 delivery.


Assuntos
Adenoviridae , Vetores Genéticos , Vetores Genéticos/genética , Adenoviridae/genética , Terapia Genética
2.
Phys Rev Lett ; 120(3): 037401, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400509

RESUMO

The advent of two-dimensional semiconductors, such as van der Waals heterostructures, propels new research directions in condensed matter physics and enables development of novel devices with unique functionalities. Here, we show experimentally that a monolayer of MoSe_{2} embedded in a charge controlled heterostructure can be used to realize an electrically tunable atomically thin mirror, which effects 87% extinction of an incident field that is resonant with its exciton transition. The corresponding maximum reflection coefficient of 41% is only limited by the ratio of the radiative decay rate to the nonradiative linewidth of exciton transition and is independent of incident light intensity up to 400 W/cm^{2}. We demonstrate that the reflectivity of the mirror can be drastically modified by applying a gate voltage that modifies the monolayer charge density. Our findings could find applications ranging from fast programable spatial light modulators to suspended ultralight mirrors for optomechanical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA