Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11483, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769178

RESUMO

Recently, plasmonic-based sensors operating in the terahertz frequency range have emerged as perspective tools for rapid and efficient label-free biosensing applications. In this work, we present a fully electronic approach allowing us to achieve state-of-the-art sensitivity by utilizing a near-field-coupled electronic sensor. We demonstrate that the proposed concept enables the efficient implementation and probing of a so-called ultra-strongly coupled sub-wavelength meta-atom as well as a single resonant circuit, allowing to limit the volume of material under test down to a few picoliter range. The sensor has been monolithically integrated into a cost-efficient silicon-based CMOS technology. Our findings are supported by both numerical and analytical models and validated through experiments. They lay the groundwork for near-future developments, outlining the perspectives for a terahertz microfluidic lab-on-chip dielectric spectroscopy sensor.

2.
Sci Rep ; 13(1): 16161, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758798

RESUMO

In this work, we present the effect of self-mixing in compact terahertz emitters implemented in a 130 nm SiGe BiCMOS technology. The devices are based on a differential Colpitts oscillator topology with optimized emission frequency at the fundamental harmonic. The radiation is out-coupled through the substrate side using a hyper-hemispheric silicon lens. The first source is optimized for 200 GHz and radiates up to 0.525 mW of propagating power. The second source emits up to 0.325 mW at 260 GHz. We demonstrate that in these devices, feedback radiation produces the change in bias current, the magnitude of which can reach up to several percent compared to the bias current itself, enabling feedback interferometric measurements. We demonstrate the applicability of feedback interferometry to perform coherent reflection-type raster-scan imaging.

3.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430510

RESUMO

We report on the experimental evidence of thermal terahertz (THz) emission tailored by magnetic polariton (MP) excitations in entirely GaAs-based structures equipped with metasurfaces. The n-GaAs/GaAs/TiAu structure was optimized using finite-difference time-domain (FDTD) simulations for the resonant MP excitations in the frequency range below 2 THz. Molecular beam epitaxy was used to grow the GaAs layer on the n-GaAs substrate, and a metasurface, comprising periodic TiAu squares, was formed on the top surface using UV laser lithography. The structures exhibited resonant reflectivity dips at room temperature and emissivity peaks at T=390 °C in the range from 0.7 THz to 1.3 THz, depending on the size of the square metacells. In addition, the excitations of the third harmonic were observed. The bandwidth was measured as narrow as 0.19 THz of the resonant emission line at 0.71 THz for a 42 µm metacell side length. An equivalent LC circuit model was used to describe the spectral positions of MP resonances analytically. Good agreement was achieved among the results of simulations, room temperature reflection measurements, thermal emission experiments, and equivalent LC circuit model calculations. Thermal emitters are mostly produced using a metal-insulator-metal (MIM) stack, whereas our proposed employment of n-GaAs substrate instead of metal film allows us to integrate the emitter with other GaAs optoelectronic devices. The MP resonance quality factors obtained at elevated temperatures (Q≈3.3to5.2) are very similar to those of MIM structures as well as to 2D plasmon resonance quality at cryogenic temperatures.

4.
Heliyon ; 9(1): e12808, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685367

RESUMO

The impact of cybersecurity (CS) on public well-being is increasing due to the continued digitisation process of all industry sectors. The protection of information systems rests upon a sufficient number of CS specialists and their competences. A cyber-competence map describing the capacity and trends of the CS workforce is an essential element of the workforce development strategy. Large enterprises tend to have narrowly specialised employees with clearly identifiable roles. Still, most enterprises in small countries are SMEs. Therefore, the tasks and responsibilities of many CS-related specialists overlap the functions of several roles. This paper aims to develop a small-state cybersecurity competence map consistent with the standards of professional organisations. The work applies a combined qualitative and quantitative methodological approach to collect data using questionnaires and expert interviews in the CS field organisations. The study includes a representative public survey, a large-scale survey of company executives, an exploratory CS expert survey, and a comprehensive job posting analysis. Finally, a national CS competence map is presented and verified using two qualitative semi-structured interviews with field professionals. Even though the map reflects a status of a small nation state, it is activity-based and might be applicable in any country. As a future research direction, we will investigate the impact of early and late exposure to cybersecurity competences in education and framework applicability.

5.
Light Sci Appl ; 11(1): 326, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385101

RESUMO

Structured light - electromagnetic waves with a strong spatial inhomogeneity of amplitude, phase, and polarization - has occupied far-reaching positions in both optical research and applications. Terahertz (THz) waves, due to recent innovations in photonics and nanotechnology, became so robust that it was not only implemented in a wide variety of applications such as communications, spectroscopic analysis, and non-destructive imaging, but also served as a low-cost and easily implementable experimental platform for novel concept illustration. In this work, we show that structured nonparaxial THz light in the form of Airy, Bessel, and Gaussian beams can be generated in a compact way using exclusively silicon diffractive optics prepared by femtosecond laser ablation technology. The accelerating nature of the generated structured light is demonstrated via THz imaging of objects partially obscured by an opaque beam block. Unlike conventional paraxial approaches, when a combination of a lens and a cubic phase (or amplitude) mask creates a nondiffracting Airy beam, we demonstrate simultaneous lensless nonparaxial THz Airy beam generation and its application in imaging system. Images of single objects, imaging with a controllable placed obstacle, and imaging of stacked graphene layers are presented, revealing hence potential of the approach to inspect quality of 2D materials. Structured nonparaxial THz illumination is investigated both theoretically and experimentally with appropriate extensive benchmarks. The structured THz illumination consistently outperforms the conventional one in resolution and contrast, thus opening new frontiers of structured light applications in imaging and inverse scattering problems, as it enables sophisticated estimates of optical properties of the investigated structures.

6.
Sensors (Basel) ; 21(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502686

RESUMO

The spread of practical terahertz (THz) systems dedicated to the telecommunication, pharmacy, civil security, or medical markets requires the use of mainstream semiconductor technologies, such as complementary metal-oxide-semiconductor (CMOS) lines. In this paper, we discuss the operation of a CMOS-based free space all-electronic system operating near 250 GHz, exhibiting signal-to-noise ratio (SNR) with 62 dB in the direct detection regime for one Hz equivalent noise bandwidth. It combines the state-of-the-art detector based on CMOS field-effect-transistors (FET) and a harmonic voltage-controlled oscillator (VCO). Three generations of the oscillator circuit are presented, and the performance characterization techniques and their improvement are explained in detail. The manuscript presents different emitter-detector pair operation modalities, including spectroscopy and imaging.


Assuntos
Semicondutores , Silício , Eletrônica , Óxidos , Razão Sinal-Ruído
7.
Sensors (Basel) ; 21(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919219

RESUMO

This paper presents an overview of the different methods used for sensitivity (i.e., responsivity and noise equivalent power) determination of state-of-the-art field-effect transistor-based THz detectors/sensors. We point out that the reported result may depend very much on the method used to determine the effective area of the sensor, often leading to discrepancies of up to orders of magnitude. The challenges that arise when selecting a proper method for characterisation are demonstrated using the example of a 2×7 detector array. This array utilises field-effect transistors and monolithically integrated patch antennas at 620 GHz. The directivities of the individual antennas were simulated and determined from the measured angle dependence of the rectified voltage, as a function of tilting in the E- and H-planes. Furthermore, this study shows that the experimentally determined directivity and simulations imply that the part of radiation might still propagate in the substrate, resulting in modification of the sensor effective area. Our work summarises the methods for determining sensitivity which are paving the way towards the unified scientific metrology of FET-based THz sensors, which is important for both researchers competing for records, potential users, and system designers.

8.
Nanoscale Adv ; 3(6): 1717-1724, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36132567

RESUMO

We report the successful implementation of antenna-coupled terahertz field-effect transistors (TeraFETs) as homodyne detectors in a scattering-type scanning near-field optical microscope (s-SNOM) operating with radiation at 246.5 GHz. The devices were fabricated in Si CMOS foundry technology with two different technologies, a 90 nm process, which provides a better device performance, and a less expensive 180 nm one. The high sensitivity enables s-SNOM demodulation at up to the 10th harmonic of the cantilever's oscillation frequency. While we demonstrate application of TeraFETs at a fixed radiation frequency, this type of detector device is able to cover the entire THz frequency range.

9.
Sensors (Basel) ; 20(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707924

RESUMO

This work presents, to our knowledge, the first completely passive imaging with human-body-emitted radiation in the lower THz frequency range using a broadband uncooled detector. The sensor consists of a Si CMOS field-effect transistor with an integrated log-spiral THz antenna. This THz sensor was measured to exhibit a rather flat responsivity over the 0.1-1.5-THz frequency range, with values of the optical responsivity and noise-equivalent power of around 40 mA/W and 42 pW/ Hz , respectively. These values are in good agreement with simulations which suggest an even broader flat responsivity range exceeding 2.0 THz. The successful imaging demonstrates the impressive thermal sensitivity which can be achieved with such a sensor. Recording of a 2.3 × 7.5-cm 2 -sized image of the fingers of a hand with a pixel size of 1 mm 2 at a scanning speed of 1 mm/s leads to a signal-to-noise ratio of 2 and a noise-equivalent temperature difference of 4.4 K. This approach shows a new sensing approach with field-effect transistors as THz detectors which are usually used for active THz detection.


Assuntos
Diagnóstico por Imagem , Corpo Humano , Radiação Terahertz , Desenho de Equipamento , Humanos , Razão Sinal-Ruído
10.
Sensors (Basel) ; 18(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400183

RESUMO

We demonstrate that the rectifying field effect transistor, biased to the subthreshold regime, in a large signal regime exhibits a super-linear response to the incident terahertz (THz) power. This phenomenon can be exploited in a variety of experiments which exploit a nonlinear response, such as nonlinear autocorrelation measurements, for direct assessment of intrinsic response time using a pump-probe configuration or for indirect calibration of the oscillating voltage amplitude, which is delivered to the device. For these purposes, we employ a broadband bow-tie antenna coupled Si CMOS field-effect-transistor-based THz detector (TeraFET) in a nonlinear autocorrelation experiment performed with picoseconds-scale pulsed THz radiation. We have found that, in a wide range of gate bias (above the threshold voltage V th = 445 mV), the detected signal follows linearly to the emitted THz power. For gate bias below the threshold voltage (at 350 mV and below), the detected signal increases in a super-linear manner. A combination of these response regimes allows for performing nonlinear autocorrelation measurements with a single device and avoiding cryogenic cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA