Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
2.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629828

RESUMO

The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.


Assuntos
Encéfalo , Cerebelo , Camundongos , Animais , Cerebelo/fisiologia , Nistagmo Optocinético , Neurônios , Aprendizagem , Estimulação Luminosa/métodos
3.
Glia ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591259

RESUMO

Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24-h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte-specific stimulation by channelrhodopsin-2 or deep-brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte-specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte-neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.

4.
Neurosci Res ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38311032

RESUMO

The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.

5.
Cancer Sci ; 115(1): 227-236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994570

RESUMO

Charged particle beams induce various biological effects by creating high-density ionization through the deposition of energy along the beam's trajectory. Charged particle beams composed of neon ions (20 Ne10+ ) hold great potential for biomedical applications, but their physiological effects on living organs remain uncertain. In this study, we demonstrate that neon-ion beams expedite the process of reoxygenation in tumor models. We simulated mouse SCCVII syngeneic tumors and exposed them to either X-ray or neon-ion beams. Through an in vivo radiobiological assay, we observed a reduction in the hypoxic fraction in tumors irradiated with 8.2 Gy of neon-ion beams 30 h after irradiation compared to 6 h post-irradiation. Conversely, no significant changes in hypoxia were observed in tumors irradiated with 8.2 Gy of X-rays. To directly quantify hypoxia in the irradiated living tumors, we utilized dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging. These combined MRI techniques revealed that the non-hypoxic fraction in neon-irradiated tumors was significantly higher than that in X-irradiated tumors (69.53% vs. 47.67%). Simultaneously, the hypoxic fraction in neon-ion-irradiated tumors (2.77%) was lower than that in X-irradiated tumors (4.27%) and non-irradiated tumors (32.44%). These results support the notion that accelerated reoxygenation occurs more effectively with neon-ion beam irradiation compared to X-rays. These findings shed light on the physiological effects of neon-ion beams on tumors and their microenvironment, emphasizing the therapeutic advantage of using neon-ion charged particle beams to manipulate tumor reoxygenation.


Assuntos
Neoplasias , Camundongos , Animais , Neônio , Íons , Hipóxia , Microambiente Tumoral
6.
Nat Biomed Eng ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945752

RESUMO

The enhancement of insulin secretion and of the proliferation of pancreatic ß cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to ß cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and ß cell proliferation.

7.
Neurosci Res ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38007191

RESUMO

Anger transition is often abrupt. In this study, we investigated the mechanisms responsible for switching and modulating aggression levels. The cerebellum is considered a center for motor coordination and learning; however, its connection to social behavior has long been observed. Here, we used the resident-intruder paradigm in male mice and examined local field potential (LFP) changes, glial cytosolic ion fluctuations, and vascular dynamics in the cerebellar vermis throughout various phases of a combat sequence. Notably, we observed the emergence of theta band oscillations in the LFP and sustained elevations in glial Ca2+ levels during combat breakups. When astrocytes, including Bergmann glial cells, were photoactivated using channelrhodopsin-2, the theta band emerged and an early combat breakup occurred. Within a single combat sequence, rapid alteration of offensive (fight) and passive (flight) responses were observed, which roughly correlated with decreases and increases in glial Ca2+, respectively. Neuron-glial interactions in the cerebellar vermis may play a role in adjusting Purkinje cell excitability and setting the tone of aggression. Future anger management strategies and clinical control of excessive aggression and violent behavior may be realized by developing a therapeutic strategy that adjusts glial activity in the cerebellum.

8.
J Neuroendocrinol ; 35(12): e13351, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37901949

RESUMO

Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.


Assuntos
Hormônio Liberador da Corticotropina , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Hipotálamo/metabolismo
9.
Phys Med Biol ; 68(19)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37625420

RESUMO

Objective.Tumour response to radiation therapy appears as changes in tumour vascular condition. There are several methods for analysing tumour blood circulatory changes one of which is dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), but there is no method that can observe the tumour vascular condition and physiological changes at the site of radiation therapy. Positron emission tomography (PET) has been applied for treatment verification in charged particle therapy, which is based on the detection of positron emitters produced through nuclear fragmentation reactions in a patient's body. However, the produced positron emitters are washed out biologically depending on the tumour vascular condition. This means that measuring the biological washout rate may allow evaluation of the tumour radiation response, in a similar manner to DCE-MRI. Therefore, this study compared the washout rates in rats between in-beam PET during12C ion beam irradiation and DCE-MRI.Approach.Different vascular conditions of the tumour model were prepared for six nude rats. The tumour of each nude rat was irradiated by a12C ion beam with simultaneous in-beam PET measurement. In 10-12 h, the DCE-MRI experiment was performed for the same six nude rats. The biological washout rate of the produced positron emitters (k2,1st) and the MRI contrast agent (k2a) were derived using the single tissue compartment model.Main results.A linear correlation was observed betweenk2,1standk2a, and they were inversely related to fractional necrotic volume.Significance.This is the first animal study which confirmed the biological washout rate of in-beam PET correlates closely with tumour vascular condition measured with the MRI contrast agent administrated intravenously.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Animais , Ratos , Ratos Nus , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Carbono
10.
Brain ; 146(6): 2431-2442, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36866512

RESUMO

It is usually assumed that individuals rest during sleep. However, coordinated neural activity that presumably requires high energy consumption is increased during REM sleep. Here, using freely moving male transgenic mice, the local brain environment and astrocyte activity during REM sleep were examined using the fibre photometry method with an optical fibre inserted deep into the lateral hypothalamus, a region that is linked with controlling sleep and metabolic state of the entire brain. Optical fluctuations of endogenous autofluorescence of the brain parenchyma or fluorescence of sensors for Ca2+ or pH expressed in astrocytes were examined. Using a newly devised method for analysis, changes in cytosolic Ca2+ and pH in astrocytes and changes in the local brain blood volume (BBV) were extracted. On REM sleep, astrocytic Ca2+ decreases, pH decreases (acidification) and BBV increases. Acidification was unexpected, as an increase in BBV would result in efficient carbon dioxide and/or lactate removal, which leads to alkalinization of the local brain environment. Acidification could be a result of increased glutamate transporter activity due to enhanced neuronal activity and/or aerobic metabolism in astrocytes. Notably, optical signal changes preceded the onset of the electrophysiological property signature of REM sleep by ∼20-30 s. This suggests that changes in the local brain environment have strong control over the state of neuronal cell activity. With repeated stimulation of the hippocampus, seizure response gradually develops through kindling. After a fully kindled state was obtained with multiple days of stimuli, the optical properties of REM sleep at the lateral hypothalamus were examined again. Although a negative deflection of the detected optical signal was observed during REM sleep after kindling, the estimated component changed. The decrease in Ca2+ and increase in BBV were minimal, and a large decrease in pH (acidification) emerged. This acidic shift may trigger an additional gliotransmitter release from astrocytes, which could lead to a state of hyperexcitable brain. As the properties of REM sleep change with the development of epilepsy, REM sleep analysis may serve as a biomarker of epileptogenesis severity. REM sleep analysis may also predict whether a specific REM sleep episode triggers post-sleep seizures.


Assuntos
Epilepsia , Sono REM , Animais , Camundongos , Masculino , Sono REM/fisiologia , Cálcio , Sono/fisiologia , Convulsões
11.
Brain ; 146(2): 576-586, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36423658

RESUMO

Plastic change of the neuronal system has traditionally been assumed to be governed primarily by the long-term potentiation/depression mechanisms of synaptic transmission. However, a rather simple shift in the ambient ion, transmitter and metabolite concentrations could have a pivotal role in generating plasticity upon the physiological process of learning and memory. Local brain environment and metabolic changes could also be the cause and consequences of the pathogenesis leading to epilepsy. Governing of the local brain environment is the primal function of astrocytes. The metabolic state of the entire brain is strongly linked to the activity of the lateral hypothalamus. In this study, plastic change of astrocyte reactions in the lateral hypothalamus was examined using epileptogenesis as an extreme form of plasticity. Fluorescent sensors for calcium or pH expressed in astrocytes were examined for up to one week by in vivo fibre photometry in freely moving transgenic male mice. Optical fluctuations on a timescale of seconds is difficult to assess because these signals are heavily influenced by local brain blood volume changes and pH changes. Using a newly devised method for the analysis of the optical signals, changes in Ca2+ and pH in astrocytes and changes in local brain blood volume associated with hippocampal-stimulated epileptic seizures were extracted. Following a transient alkaline shift in the astrocyte triggered by neuronal hyperactivity, a prominent acidic shift appeared in response to intensified seizure which developed with kindling. The acidic shift was unexpected as transient increase in local brain blood volume was observed in response to intensified seizures, which should lead to efficient extrusion of the acidic CO2. The acidic shift could be a result of glutamate transporter activity and/or due to the increased metabolic load of astrocytes leading to increased CO2 and lactate production. This acidic shift may trigger additional gliotransmitter release from astrocytes leading to the exacerbation of epilepsy. As all cellular enzymic reactions are influenced by Ca2+ and pH, changes in these parameters could also have an impact on the neuronal circuit activity. Thus, controlling the astrocyte pH and/or Ca2+ could be a new therapeutic target for treatment of epilepsy or prevention of undesired plasticity associated with epileptogenesis.


Assuntos
Cálcio , Epilepsia , Camundongos , Animais , Masculino , Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Encéfalo/patologia , Convulsões/etiologia , Epilepsia/patologia , Astrócitos/metabolismo
12.
Neuroimage ; 264: 119763, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427751

RESUMO

Positron emission tomography (PET) with 18F-PM-PBB3 (18F-APN-1607, 18F-Florzolotau) enables high-contrast detection of tau depositions in various neurodegenerative dementias, including Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). A simplified method for quantifying radioligand binding in target regions is to employ the cerebellum as a reference (CB-ref) on the assumption that the cerebellum has minimal tau pathologies. This procedure is typically valid in AD, while FTLD disorders exemplified by progressive supranuclear palsy (PSP) are characterized by occasional tau accumulations in the cerebellum, hampering the application of CB-ref. The present study aimed to establish an optimal method for defining reference tissues on 18F-PM-PBB3-PET images of AD and non-AD tauopathy brains. We developed a new algorithm to extract reference voxels with a low likelihood of containing tau deposits from gray matter (GM-ref) or white matter (WM-ref) by a bimodal fit to an individual, voxel-wise histogram of the radioligand retentions and applied it to 18F-PM-PBB3-PET data obtained from age-matched 40 healthy controls (HCs) and 23 CE, 40 PSP, and five other tau-positive FTLD patients. PET images acquired at 90-110 min after injection were averaged and co-registered to corresponding magnetic resonance imaging space. Subsequently, we generated standardized uptake value ratio (SUVR) images estimated by CB-ref, GM-ref and WM-ref, respectively, and then compared the diagnostic performances. GM-ref and WM-ref covered a broad area in HCs and were free of voxels located in regions known to bear high tau burdens in AD and PSP patients. However, radioligand retentions in WM-ref exhibited age-related declines. GM-ref was unaffected by aging and provided SUVR images with higher contrast than CB-ref in FTLD patients with suspected and confirmed corticobasal degeneration. The methodology for determining reference tissues as optimized here improves the accuracy of 18F-PM-PBB3-PET measurements of tau burdens in a wide range of neurodegenerative illnesses.


Assuntos
Cerebelo , Tomografia por Emissão de Pósitrons , Tauopatias , Proteínas tau , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Tomografia por Emissão de Pósitrons/normas , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/análise , Proteínas tau/metabolismo , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Padrões de Referência
13.
Front Neurosci ; 16: 961686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213741

RESUMO

Functional magnetic resonance imaging (fMRI) evaluates brain activity using blood oxygenation level-dependent (BOLD) contrast. Resting-state fMRI (rsfMRI) examines spontaneous brain function using BOLD in the absence of a task, and the default mode network (DMN) has been identified from that. The DMN is a set of nodes within the brain that appear to be active and in communication when the subject is in an awake resting state. In addition to signal changes related to neural activity, it is thought that the BOLD signal may be affected by systemic low-frequency oscillations (SysLFOs) that are non-neuronal in source and likely propagate throughout the brain to arrive at different regions at different times. However, it may be difficult to distinguish between the response due to neuronal activity and the arrival of a SysLFO in specific regions. Conventional single-shot EPI (Conv) acquisition requires a longish repetition time, but faster image acquisition has recently become possible with multiband excitation EPI (MB). In this study, we evaluated the time-lag between nodes of the DMN using both Conv and MB protocols to determine whether it is possible to distinguish between neuronal activity and SysLFO related responses during rsfMRI. While the Conv protocol data suggested that SysLFOs substantially influence the apparent time-lag of neuronal activity, the MB protocol data implied that the effects of SysLFOs and neuronal activity on the BOLD response may be separated. Using a higher time-resolution acquisition for rsfMRI might help to distinguish neuronal activity induced changes to the BOLD response from those induced by non-neuronal sources.

14.
Mov Disord ; 37(11): 2236-2246, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054492

RESUMO

BACKGROUND: We recently developed a positron emission tomography (PET) probe, [18 F]PM-PBB3, to detect tau lesions in diverse tauopathies, including mixed three-repeat and four-repeat (3R + 4R) tau fibrils in Alzheimer's disease (AD) and 4R tau aggregates in progressive supranuclear palsy (PSP). For wider availability of this technology for clinical settings, bias-free quantitative evaluation of tau images without a priori disease information is needed. OBJECTIVE: We aimed to establish tau PET pathology indices to characterize PSP and AD using a machine learning approach and test their validity and tracer capabilities. METHODS: Data were obtained from 50 healthy control subjects, 46 patients with PSP Richardson syndrome, and 37 patients on the AD continuum. Tau PET data from 114 regions of interest were subjected to Elastic Net cross-validation linear classification analysis with a one-versus-the-rest multiclass strategy to obtain a linear function that discriminates diseases by maximizing the area under the receiver operating characteristic curve. We defined PSP- and AD-tau scores for each participant as values of the functions optimized for differentiating PSP (4R) and AD (3R + 4R), respectively, from others. RESULTS: The discriminatory ability of PSP- and AD-tau scores assessed as the area under the receiver operating characteristic curve was 0.98 and 1.00, respectively. PSP-tau scores correlated with the PSP rating scale in patients with PSP, and AD-tau scores correlated with Mini-Mental State Examination scores in healthy control-AD continuum patients. The globus pallidus and amygdala were highlighted as regions with high weight coefficients for determining PSP- and AD-tau scores, respectively. CONCLUSIONS: These findings highlight our technology's unbiased capability to identify topologies of 3R + 4R versus 4R tau deposits. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/metabolismo , Encéfalo/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Paralisia Supranuclear Progressiva/patologia , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Aprendizado de Máquina
15.
Front Psychiatry ; 13: 811136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903633

RESUMO

Objectives: Positron emission tomography (PET) with [11C]raclopride has been applied to measure changes in the concentration of endogenous dopamine induced by pharmacological challenge or neuropsychological stimulation by evaluating the binding potential (BP) between the baseline and activated state. Recently, to reliably estimate BP in the activated state, a new approach with dual-bolus injections in a single PET scan was developed. In this study, we investigated the feasibility of applying this dual-bolus injection approach to measure changes in endogenous dopamine levels induced by cognitive tasks in humans. Methods: First, the reproducibility of BP estimation using the dual-bolus injection approach was evaluated using PET scans without stimulation in nine healthy volunteers. A 90-min scan was performed with bolus injections of [11C]raclopride administered at the beginning of the scan and 45 min after the first injection. BPs in the striatum for the first injection (BP1) and second injection (BP2) were estimated using an extended simplified reference tissue model, and the mean absolute difference (MAD) between the two BPs was calculated. The MAD was also compared with the conventional bolus-plus-continuous infusion approach. Next, PET studies with a cognitive reinforcement learning task were performed on 10 healthy volunteers using the dual-bolus injection approach. The BP1 at baseline and BP2 at the activated state were estimated, and the reduction in BP was evaluated. Results: In the PET scans without stimulation, the dual-bolus injection approach showed a smaller MAD (<2%) between BP1 and BP2 than the bolus-plus-continuous infusion approach, demonstrating good reproducibility of this approach. In the PET scans with the cognitive task performance, the reduction in BP was not observed in the striatum by either approach, showing that the changes in dopamine level induced by the cognitive tasks performed in this study were not sufficient to be detected by PET. Conclusion: Our results indicate that the cognitive task-induced changes in dopamine-related systems may be complex and difficult to measure accurately using PET scans. However, the proposed dual-bolus injection approach provided reliable BP estimates with high reproducibility, suggesting that it has the potential to improve the accuracy of PET scans for measuring changes in dopamine concentrations.

16.
IBRO Neurosci Rep ; 12: 108-120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128515

RESUMO

Methamphetamine (METH), which is used to improve the alertness of narcoleptic patients, elicits autonomic physiological responses such as increases in body temperature, blood pressure and heart rate. We have shown that orexin synthesizing neurons, which have an important role in maintaining wakefulness, greatly contribute to the regulation of cardiovascular and thermoregulatory function. This regulation is partly mediated by glutamatergic as well as orexinergic signalling from the orexin neurons. These signals may also be involved in the autonomic response elicited by METH. This study aimed to determine if loss of either orexin or glutamate in orexin neurons would affect METH-induced changes in heart rate and body temperature. We used transgenic mice in which the vesicular glutamate transporter 2 gene was disrupted selectively in orexin-producing neurons (ORX;vGT2-KO), prepro-orexin knockout mice (ORX-KO), and control wild type mice (WT). We measured body temperature, heart rate and locomotor activity with a pre-implanted telemetry probe and compared the effect of METH (0.5, 2 and 5 mg/kg i.p.) on these parameters between these three groups. A low dose of METH induced hyperthermia and tachycardia responses in ORX;vGT2-KO mice, which were significant compared to ORX-KO and WT mice. The highest dose of METH induced hypothermia and bradycardia in ORX-KO mice, however, it induced hyperthermia in both WT and ORX;vGT2-KO mice. These results suggest that glutamate and orexin from orexin neurons have differential roles in mediating METH-induced changes in body temperature and heart rate.

17.
Brain Imaging Behav ; 16(3): 1337-1348, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35006540

RESUMO

The tendency to avoid punishment, called behavioral inhibition system, is an essential aspect of motivational behavior. Behavioral inhibition system is related to negative affect, such as anxiety, depression and pain, but its neural basis has not yet been clarified. To clarify the association between individual variations in behavioral inhibition system and brain 5-HT2A receptor availability and specify which brain networks were involved in healthy male subjects, using [18F]altanserin positron emission tomography and resting-state functional magnetic resonance imaging. Behavioral inhibition system score negatively correlated with 5-HT2A receptor availability in anterior cingulate cortex. A statistical model indicated that the behavioral inhibition system score was associated with 5-HT2A receptor availability, which was mediated by the functional connectivity between anterior cingulate cortex and left middle frontal gyrus, both of which involved in the cognitive control of negative information processing. Individuals with high behavioral inhibition system displays low 5-HT2A receptor availability in anterior cingulate cortex and this cognitive control network links with prefrontal-cingulate integrity. These findings have implications for underlying the serotonergic basis of physiologies in aversion.


Assuntos
Imageamento por Ressonância Magnética , Receptor 5-HT2A de Serotonina , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Inibição Psicológica , Imageamento por Ressonância Magnética/métodos , Masculino , Redes Neurais de Computação , Vias Neurais
18.
Neural Regen Res ; 17(4): 881-886, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472489

RESUMO

In the central nervous system, the A6 noradrenaline (NA) and the B3 serotonin (5-HT) cell groups are well-recognized players in the descending antinociceptive system, while other NA/5-HT cell groups are not well characterized. A5/A7 NA and B2 5-HT cells project to the spinal horn and form descending pathways. We recorded G-CaMP6 green fluorescence signal intensities in the A5/A7 NA and the B2 5-HT cell groups of awake mice in response to acute tail pinch stimuli, acute heat stimuli, and in the context of a non-noxious control test, using fiber photometry with a calcium imaging system. We first introduced G-CaMP6 in the A5/A7 NA or B2 5-HT neuronal soma, using transgenic mice carrying the tetracycline-controlled transactivator transgene under the control of either a dopamine ß-hydroxylase or a tryptophan hydroxylase-2 promoters and by the site-specific injection of adeno-associated virus (AAV-TetO(3G)-G-CaMP6). After confirming the specific expression patterns of G-CaMP6, we recorded G-CaMP6 green fluorescence signals in these sites in awake mice in response to acute nociceptive stimuli. G-CaMP6 fluorescence intensity in the A5, A7, and B2 cell groups was rapidly increased in response to acute nociceptive stimuli and soon after, it returned to baseline fluorescence intensity. This was not observed in the non-noxious control test. The results indicate that acute nociceptive stimuli rapidly increase the activities of A5/A7 NA or B2 5-HT neurons but the non-noxious stimuli do not. The present study suggests that A5/A7 NA or B2 5-HT neurons play important roles in nociceptive processing in the central nervous system. We suggest that A5/A7/B2 neurons may be new therapeutic targets. All performed procedures were approved by the Institutional Animal Use Committee of Kagoshima University (MD17105) on February 22, 2018.

19.
Neurobiol Dis ; 163: 105602, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954320

RESUMO

Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.


Assuntos
Encéfalo/fisiopatologia , Excitação Neurológica/fisiologia , Optogenética , Convulsões/fisiopatologia , Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Eletroencefalografia , Ratos , Ratos Transgênicos , Ratos Wistar , Convulsões/metabolismo
20.
Eur J Nucl Med Mol Imaging ; 49(4): 1127-1135, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651222

RESUMO

PURPOSE: Histamine H3 receptor antagonists and inverse agonists have been extensively developed to treat sleep-wake, neurocognitive, and allied disorders. However, potential adverse effects, including insomnia, hampered the clinical use of these drugs, possibly due to their persistent interaction with the target molecules. The purpose of the present study was to estimate the pharmacokinetics and pharmacodynamics of enerisant, a novel antagonist and inverse agonist for histamine H3 receptors. METHODS: To measure the histamine H3 receptor occupancy by enerisant, positron emission tomography studies using [11C]TASP457, a specific radioligand for histamine H3 receptors, were performed in 12 healthy men at baseline and at 2 h after oral administration of enerisant hydrochloride. For three of these subjects, two additional scans were performed at 6 and 26 h after the administration. Relationships between the receptor occupancy by enerisant and its dose and plasma concentrations were then analyzed. RESULTS: Administration of enerisant hydrochloride decreased the radioligand binding in a dose-dependent manner. The estimated receptor occupancy values at 2 h varied as a function of its dose or plasma concentration. The time course of the occupancy showed persistently high levels (> 85%) in the two subjects with higher doses (25 and 12.5 mg). The occupancy was also initially high at 2 h and 6 h with the lower dose of 5 mg, but it decreased to 69.7% at 26 h. CONCLUSION: The target engagement of enerisant was demonstrated in the brains of living human subjects. The occupancy of histamine H3 receptors by enerisant at 2 h can be predicted by applying the plasma concentration of enerisant to Hill's plot. The preliminary time-course investigation showed persistently high brain occupancy with high doses of enerisant despite the decreasing plasma concentration of the drug. Five milligrams or less dose would be appropriate for the treatment for narcolepsy with initially high occupancy allowing for effective treatment of narcolepsy, and then the occupancy level would be expected to decrease to a level to avoid this drug's unwanted side effect of insomnia at night, although further research is warranted to confirm the statement since the expected decrease is based on the finding in one subject. TRIAL REGISTRATION: This study was retrospectively registered with ClinicalTrials.gov (NCT04631276) on November 17, 2020.


Assuntos
Narcolepsia , Fármacos Neuroprotetores , Receptores Histamínicos H3 , Distúrbios do Início e da Manutenção do Sono , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Histamina/metabolismo , Humanos , Ligantes , Masculino , Narcolepsia/metabolismo , Niacinamida , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Quinolonas , Receptores Histamínicos H3/metabolismo , Distúrbios do Início e da Manutenção do Sono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA