Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
NPJ Microgravity ; 10(1): 26, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448495

RESUMO

The relationships between materials processing and structure can vary between terrestrial and reduced gravity environments. As one case study, we compare the nonequilibrium melt processing of a rare-earth titanate, nominally 83TiO2-17Nd2O3, and the structure of its glassy and crystalline products. Density and thermal expansion for the liquid, supercooled liquid, and glass are measured over 300-1850 °C using the Electrostatic Levitation Furnace (ELF) in microgravity, and two replicate density measurements were reproducible to within 0.4%. Cooling rates in ELF are 40-110 °C s-1 lower than those in a terrestrial aerodynamic levitator due to the absence of forced convection. X-ray/neutron total scattering and Raman spectroscopy indicate that glasses processed on Earth and in microgravity exhibit similar atomic structures, with only subtle differences that are consistent with compositional variations of ~2 mol. % Nd2O3. The glass atomic network contains a mixture of corner- and edge-sharing Ti-O polyhedra, and the fraction of edge-sharing arrangements decreases with increasing Nd2O3 content. X-ray tomography and electron microscopy of crystalline products reveal substantial differences in microstructure, grain size, and crystalline phases, which arise from differences in the melt processes.

2.
Nature ; 623(7988): 724-731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938779

RESUMO

Nanomaterials must be systematically designed to be technologically viable1-5. Driven by optimizing intermolecular interactions, current designs are too rigid to plug in new chemical functionalities and cannot mitigate condition differences during integration6,7. Despite extensive optimization of building blocks and treatments, accessing nanostructures with the required feature sizes and chemistries is difficult. Programming their growth across the nano-to-macro hierarchy also remains challenging, if not impossible8-13. To address these limitations, we should shift to entropy-driven assemblies to gain design flexibility, as seen in high-entropy alloys, and program nanomaterial growth to kinetically match target feature sizes to the mobility of the system during processing14-17. Here, following a micro-then-nano growth sequence in ternary composite blends composed of block-copolymer-based supramolecules, small molecules and nanoparticles, we successfully fabricate high-performance barrier materials composed of more than 200 stacked nanosheets (125 nm sheet thickness) with a defect density less than 0.056 µm-2 and about 98% efficiency in controlling the defect type. Contrary to common perception, polymer-chain entanglements are advantageous to realize long-range order, accelerate the fabrication process (<30 min) and satisfy specific requirements to advance multilayered film technology3,4,18. This study showcases the feasibility, necessity and unlimited opportunities to transform laboratory nanoscience into nanotechnology through systems engineering of self-assembly.

3.
ACS Nano ; 17(18): 18392-18401, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37668312

RESUMO

Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570497

RESUMO

ZnO inverse opals combine the outstanding properties of the semiconductor ZnO with the high surface area of the open-porous framework, making them valuable photonic and catalysis support materials. One route to produce inverse opals is to mineralize the voids of close-packed polymer nanoparticle templates by chemical bath deposition (CBD) using a ZnO precursor solution, followed by template removal. To ensure synthesis control, the formation and growth of ZnO nanoparticles in a precursor solution containing the organic additive polyvinylpyrrolidone (PVP) was investigated by in situ ultra-small- and small-angle X-ray scattering (USAXS/SAXS). Before that, we studied the precursor solution by in-house SAXS at T = 25 °C, revealing the presence of a PVP network with semiflexible chain behavior. Heating the precursor solution to 58 °C or 63 °C initiates the formation of small ZnO nanoparticles that cluster together, as shown by complementary transmission electron microscopy images (TEM) taken after synthesis. The underlying kinetics of this process could be deciphered by quantitatively analyzing the USAXS/SAXS data considering the scattering contributions of particles, clusters, and the PVP network. A nearly quantitative description of both the nucleation and growth period could be achieved using the two-step Finke-Watzky model with slow, continuous nucleation followed by autocatalytic growth.

5.
Nanomaterials (Basel) ; 13(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242067

RESUMO

Laboratory-scale analysis of natural rocks provides petrophysical properties such as density, porosity, pore diameter/pore-throat diameter distribution, and fluid accessibility, in addition to the size and shape of framework grains and their contact relationship with the rock matrix. Different types of laboratory approaches for petrophysical characterization involve the use of a range of sample sizes. While the sample sizes selected should aim to be representative of the rock body, there are inherent limitations imposed by the analytical principles and holding capacities of the different experimental apparatuses, with many instruments only able to accept samples at the µm-mm scale. Therefore, a total of nine (three limestones, three shales, two sandstones, and one dolomite) samples were collected from Texas to fill the knowledge gap of the sample size effect on the resultant petrophysical characteristics. The sample sizes ranged from 3 cm cubes to <75 µm particles. Using a combination of petrographic microscopy, helium expansion pycnometry, water immersion porosimetry, mercury intrusion porosimetry, and (ultra-) small-angle X-ray scattering, the impact of sample size on the petrophysical properties of these samples was systematically investigated here. The results suggest that the sample size effect is influenced by both pore structure changes during crushing and sample size-dependent fluid-to-pore connectivity.

6.
Sci Rep ; 13(1): 4581, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941285

RESUMO

The microstructure of minerals and rocks can significantly alter reaction rates. This study focuses on identifying transport paths in low porosity rocks based on the hypothesis that grain boundary widening accelerates reactions in which one mineral is replaced by another (replacement reaction). We conducted a time series of replacement experiments of three limestones (CaCO3) of different microstructures and solid impurity contents using FeCl2. Reacted solids were analyzed using chemical imaging, small angle X-ray and neutron scattering and Raman spectroscopy. In high porosity limestones replacement is reaction controlled and complete replacement was observed within 2 days. In low porosity limestones that contain 1-2% dolomite impurities and are dominated by grain boundaries, a reaction rim was observed whose width did not change with reaction time. Siderite (FeCO3) nucleation was observed in all parts of the rock cores indicating the percolation of the solution throughout the complete core. Dolomite impurities were identified to act as nucleation sites leading to growth of crystals that exert force on the CaCO3 grains. Widening of grain boundaries beyond what is expected based on dissolution and thermal grain expansion was observed in the low porosity marble containing dolomite impurities. This leads to a self-perpetuating cycle of grain boundary widening and reaction acceleration instead of reaction front propagation.

7.
Angew Chem Int Ed Engl ; 62(16): e202217683, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36802062

RESUMO

Synthetic methods to control the structure of materials at sub-micron scales are typically based on the self-assembly of structural building blocks with precise size and morphology. On the other hand, many living systems can generate structure across a broad range of length scales in one step directly from macromolecules, using phase separation. Here, we introduce and control structure at the nano- and microscales through polymerization in the solid state, which has the unusual capability of both triggering and arresting phase separation. In particular, we show that atom transfer radical polymerization (ATRP) enables control of nucleation, growth, and stabilization of phase-separated poly-methylmethacrylate (PMMA) domains in a solid polystyrene (PS) matrix. ATRP yields durable nanostructures with low size dispersity and high degrees of structural correlations. Furthermore, we demonstrate that the length scale of these materials is controlled by the synthesis parameters.

8.
Chemistry ; 29(19): e202203814, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598408

RESUMO

Uranyl peroxide nanoclusters are an evolving family of materials with potential applications throughout the nuclear fuel cycle. While several studies have investigated their interactions with alkali and alkaline earth metals, no studies have probed their interactions with the actinide elements. This work describes a system containing U60 Ox30 , [((UO2 )(O2 ))60 (C2 O4 )30 ]60- , and neptunium(V) as a function of neptunium concentration. Ultra-small and small angle X-ray scattering were used to observe these interactions in the aqueous phase, and X-ray diffraction was used to observe solid products. The results show that neptunium induces aggregation of U60 Ox30 when the neptunium concentration is≤10 mM, whereas (NpO2 )2 C2 O4 ⋅ 6H2 O(cr) and studtite ultimately form at 15-25 mM neptunium. The latter result suggests that neptunium coordinates with the bridging oxalate ligands in U60 Ox30 , leaving metastable uranyl peroxide species in solution. This is an important finding given the potential application of uranyl peroxide nanoclusters in the recycling of used nuclear fuel.

9.
Sci Rep ; 12(1): 17687, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271024

RESUMO

Aluminosilicates (AS) are ubiquitous in ceramics, geology, and planetary science, and their glassy forms underpin vital technologies used in displays, waveguides, and lasers. In spite of this, the nonequilibrium behavior of the prototypical AS compound, mullite (40SiO2-60Al2O3, or AS60), is not well understood. By deeply supercooling mullite-composition liquid via aerodynamic levitation, we observe metastable liquid-liquid unmixing that yields a transparent two-phase glass, comprising a nanoscale mixture of AS7 and AS62. Extrapolations from X-ray scattering measurements show the AS7 phase is similar to vitreous SiO2 with a few Al species substituted for Si. The AS62 phase is built from a highly polymerized network of 4-, 5-, and 6-coordinated AlOx polyhedra. Polymerization of the AS62 network and the composite morphology provide essential mechanisms for toughening the glass.

10.
J Am Chem Soc ; 144(38): 17576-17587, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102706

RESUMO

Flower-like polyacrylonitrile (PAN) particles have shown promising performance for numerous applications, including sensors, catalysis, and energy storage. However, the detailed formation process of these unique structures during polymerization has not been investigated. Here, we elucidate the formation process of flower-like PAN particles through a series of in situ and ex situ experiments. We have the following key findings. First, lamellar petals within the flower-like particles were predominantly orthorhombic PAN crystals. Second, branching of the lamellae during the particle formation arose from PAN's fast nucleation and growth on pre-existing PAN crystals, which was driven by the poor solubility of PAN in the reaction solvent. Third, the particles were formed to maintain a constant center-to-center distance during the reaction. The separation distance was attributed to strong electrostatic repulsion, which resulted in the final particles' spherical shape and uniform size. Lastly, we employed the understanding of the formation mechanism to tune the PAN particles' morphology using several experimental parameters including incorporating comonomers, changing temperature, adding nucleation seeds, and adjusting the monomer concentration. These findings provide important insights into the bottom-up design of advanced nanostructured PAN-based materials and controlled polymer nanostructure self-assemblies.


Assuntos
Resinas Acrílicas , Polímeros , Tamanho da Partícula , Polímeros/química , Solventes
11.
Proc Natl Acad Sci U S A ; 119(30): e2201566119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858447

RESUMO

Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.

12.
Front Chem ; 10: 887431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646823

RESUMO

Atomization and spraying are well-established methods for the production of submicrometer- and micrometer- sized powders. In addition, they could be of interest to the immobilization of photocatalytic nanoparticles onto supports because they enable the formation of microporous films with photocatalytic activity. Here, we provide a comparison of aerosol-assisted immobilization methods, such as spray-drying (SD), spray atomization (SA), and spray gun (SG), which were used for the deposition of TiO2 dispersions onto fibrous filter media. The morphology, microstructure, and electronic properties of the structures with deposited TiO2 were characterized by SEM and TEM, BET and USAXS, and UV-Vis spectrometry, respectively. The photocatalytic performances of the functionalized filters were evaluated and compared to the benchmark dip-coating method. Our results showed that the SG and SA immobilization methods led to the best photocatalytic and operational performance for the degradation of toluene, whereas the SD method showed the lowest degradation efficiency and poor stability of coating. We demonstrated that TiO2 sprays using the SG and SA methods with direct deposition onto filter media involving dispersed colloidal droplets revealed to be promising alternatives to the dip-coating method owing to the ability to uniformly cover the filter fibers. In addition, the SA method allowed for fast and simple control of the coating thickness as the dispersed particles were continuously directed onto the filter media without the need for repetitive coatings, which is common for the SG and dip-coating methods. Our study highlighted the importance of the proper immobilization method for the efficient photocatalytic degradation of VOCs.

13.
J Chem Phys ; 155(7): 074505, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418930

RESUMO

Deep Eutectic Solvents (DESs) are complex solutions that present unique challenges compared to traditional solvents. Unlike most aqueous electrolytes and ionic liquids, DESs have delicate hydrogen bond networks that are responsible for their highly sensitive compositional dependence on the melting point. Prior work has demonstrated a unique nanoscale structure both experimentally and theoretically that brings both challenges and opportunities to their adoption in traditional electrochemical processes. In this study, we use in situ sample-rotated ultra-small angle x-ray scattering to resolve the near-interface solvent structure after electrodepositing Pd nanoparticles onto a glassy carbon electrode in choline chloride:urea and choline chloride:ethylene glycol DESs. Our results indicate that a hierarchical solvent structure can be observed on the meso-scale in the choline chloride:urea and choline chloride:ethylene glycol systems. Importantly, this extended solvent structure increases between -0.3 V and -0.5 V (vs Ag/AgCl) and remains high until -0.9 V (vs Ag/AgCl). Experimentally, the nature of this structure is more pronounced in the ethylene glycol system, as evidenced by both the x-ray scattering and the electrochemical impedance spectroscopy. Molecular dynamics simulations and dipolar orientation analysis reveal that chloride delocalization near the Pd interface and long-range interactions between the choline and each hydrogen bond donor (HBD) are very different and qualitatively consistent with the experimental data. These results show how the long-range solvent-deposit interactions can be tuned by changing the HBD in the DES and the applied potential.

14.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193423

RESUMO

Nanoparticles are under investigation as diagnostic and therapeutic agents for joint diseases, such as osteoarthritis. However, there is incomplete understanding of nanoparticle diffusion in synovial fluid, the fluid inside the joint, which consists of a mixture of the polyelectrolyte hyaluronic acid, proteins, and other components. Here, we show that rotational and translational diffusion of polymer-coated nanoparticles in quiescent synovial fluid and in hyaluronic acid solutions is well described by the Stokes-Einstein relationship, albeit with an effective medium viscosity that is much smaller than the macroscopic low shear viscosity of the fluid. This effective medium viscosity is well described by an equation for the viscosity of dilute polymer chains, where the additional viscous dissipation arises because of the presence of the polymer segments. These results shed light on the diffusive behavior of polymer-coated inorganic nanoparticles in complex and crowded biological environments, such as in the joint.

15.
ACS Appl Mater Interfaces ; 13(31): 37004-37013, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323080

RESUMO

Rational design of catalyst layers in a membrane electrode assembly (MEA) is crucial for achieving high-performance polymer electrolyte membrane fuel cells. Establishing a clear understanding of the property (catalyst ink)-structure (catalyst layer)-performance (MEA) relationship lays the foundation for this rational design. In this work, a synergistic approach was taken to correlate the ink formulation, the microstructure of catalyst layers, and the resulting MEA performance to establish such a property-structure-performance relationship. The solvent composition (n-PA/H2O mixtures) demonstrated a strong influence on the performance of the MEA fabricated with an 830-EW (Aquivion) ionomer, especially polarization losses of cell activation and mass transport. The performance differences were studied in terms of how the solvent composition affects the catalyst/ionomer interface, ionomer network, and pore structure of the resulting catalyst layers. The ionomer aggregates mainly covered the surface of catalyst aggregates acting as oxygen reduction reaction active sites, and the aggregate sizes of the ionomer and catalyst (revealed by ultrasmall angle X-ray scattering and cryo-transmission electron microscopy) were dictated by tuning the solvent composition, which in turn determined the catalyst/ionomer interface (available active sites). In n-PA/H2O mixtures with 50∼90 wt % H2O, the catalyst agglomerates could be effectively broken up into small aggregates, leading to enhanced kinetic activities. The boiling point of the mixed solvents determined the pore structure of ultimate catalyst layers, as evidenced by mercury porosimetry and scanning electron microscopy. For mixed solvents with a higher boiling point, the catalyst-ionomer aggregates in the ink tend to agglomerate during the solvent evaporation process and finally form larger catalyst-ionomer aggregates in the ultimate catalyst layer, resulting in more secondary pores and thus lower mass transport resistance. Both the enlarged catalyst/ionomer interface and appropriate pore structure were achieved with the catalyst layer fabricated from an n-PA/H2O mixture with 90 wt % H2O, leading to the best MEA performance.

16.
ACS Nano ; 15(9): 14095-14104, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34324313

RESUMO

Although significant progress has been made in the self-assembly of nanostructures, present successes heavily rely on precision in building block design, composition, and pair interactions. These requirements fundamentally limit our ability to synthesize macroscopic materials where the likelihood of impurity inclusion escalates and, more importantly, to access molecular-to-nanoscopic-to-microscopic-to-macroscopic hierarchies, since the types and compositions of building blocks vary at each stage. Inspired by biological blends and high-entropy alloys, we hypothesize that diversifying the blend's composition can overcome these limitations. Increasing the number of components increases mixing entropy, leading to the dispersion of different components and, as a result, enhances interphase miscibility, weakens the dependence on specific pair interactions, and enables long-range cooperativity. This hypothesis is validated in complex blends containing small molecules, block copolymer-based supramolecules, and nanoparticles/colloidal particles. Hierarchically structured composites can be obtained with formulation flexibility in the filler selection and blend composition. It is worth noting that, by adding small molecules, we can solve the size constraint that plagues traditional block copolymer/nanoparticle blends. Detailed characterization and simulation further confirm that each component is distributed to locally mediate unfavorable interactions, cooperatively mitigate composition fluctuations, and retain structural fidelity. Furthermore, the blends have sufficient mobility to access tunable microstructures without compromising the order of the nanostructure. Besides establishing a kinetically viable pathway to release current constraints in the composite design and to navigate uncertainties during structure formation over multiple length scales, the present study demonstrates that entropy-driven behaviors can be realized in systems beyond high-entropy alloys despite inherent differences between metal alloys and organic/inorganic hybrids.

17.
J Synchrotron Radiat ; 28(Pt 3): 824-833, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949990

RESUMO

Ultra-SAXS can enhance the capabilities of existing synchrotron SAXS/WAXS beamlines. A compact ultra-SAXS module has been developed, which extends the measurable q-range with 0.0015 ≤ q (nm-1) ≤ 0.2, allowing structural dimensions in the range 30 ≤ D (nm) ≤ 4000 to be probed in addition to the range covered by a high-end SAXS/WAXS instrument. By shifting the module components in and out on their respective motor stages, SAXS/WAXS measurements can be easily and rapidly interleaved with USAXS measurements. The use of vertical crystal rotation axes (horizontal diffraction) greatly simplifies the construction, at minimal cost to efficiency. In this paper, the design considerations, realization and synchrotron findings are presented. Measurements of silica spheres, an alumina membrane, and a porous carbon catalyst are provided as application examples.

18.
Proc Natl Acad Sci U S A ; 118(15)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837153

RESUMO

Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy. Using the time-connectivity superposition principle a series of rapidly acquired linear viscoelastic spectra, measured throughout the gelation process by applying an exponential chirp protocol, are rescaled onto a universal master curve that spans over eight orders of magnitude in reduced frequency. This analysis reveals that the underlying relaxation time spectrum of the colloidal gel is symmetric in time with power-law tails characterized by a single exponent that is set at the gel point. The microstructural mechanical network has a dual character; at short length scales and fast times it appears glassy, whereas at longer times and larger scales it is gel-like. These results can be captured by a simple three-parameter constitutive model and demonstrate that the microstructure of a mature colloidal gel bears the residual skeleton of the original sample-spanning network that is created at the gel point. Our conclusions are confirmed by applying the same technique to another well-known colloidal gel system composed of attractive silica nanoparticles. The results illustrate the power of the time-connectivity superposition principle for this class of soft glassy materials and provide a compact description for the dichotomous viscoelastic nature of weak colloidal gels.

19.
Biomacromolecules ; 22(2): 1001-1014, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33494594

RESUMO

Polyphenols are well-known native cross-linkers and gel strengthening agents for many animal proteins. However, their role in modifying plant protein gels remains unclear. In this study, multiple techniques were applied to unravel the influence of green tea polyphenols (GTP) on pea protein gels and the underlying mechanisms. We found that the elasticity and viscosity of pea protein gels decreased with increased GTP. The protein backbone became less rigid when GTP was present based on shortened T1ρH in relaxation solid-state NMR measurements. Electron microscopy and small-angle X-ray scattering showed that gels weakened by GTP possessed disrupted networks with the presence of large protein aggregates. Solvent extraction and molecular dynamic simulation revealed a reduction in hydrophobic interactions and hydrogen bonds among proteins in gels containing GTP. The current findings may be applicable to other plant proteins for greater control of gel structures in the presence of polyphenols, expanding their utilization in food and biomedical applications.


Assuntos
Proteínas de Ervilha , Polifenóis , Animais , Géis , Proteínas de Plantas , Chá , Viscosidade
20.
Nat Commun ; 12(1): 667, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510173

RESUMO

Biological organic-inorganic materials remain a popular source of inspiration for bioinspired materials design and engineering. Inspired by the self-assembling metal-reinforced mussel holdfast threads, we tested if metal-coordinate polymer networks can be utilized as simple composite scaffolds for direct in situ crosslink mineralization. Starting with aqueous solutions of polymers end-functionalized with metal-coordinating ligands of catechol or histidine, here we show that inter-molecular metal-ion coordination complexes can serve as mineral nucleation sites, whereby significant mechanical reinforcement is achieved upon nanoscale particle growth directly at the metal-coordinate network crosslink sites.


Assuntos
Bivalves/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Metais/química , Minerais/química , Polímeros/química , Animais , Catecóis/química , Ferro/química , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Nanocompostos/ultraestrutura , Espalhamento a Baixo Ângulo , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA