Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Brain ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227807

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of FTLD in MND is difficult to estimate. In this work we describe a large clinicopathologic series of MND, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multi-centre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data, and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (p < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (p = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% vs 61.4%; p < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.

2.
Brain ; 147(2): 607-626, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769652

RESUMO

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.


Assuntos
Afasia Primária Progressiva , Apraxias , Afasia Primária Progressiva não Fluente , Humanos , Afasia de Broca/patologia , Estudos Prospectivos , Disartria , Fala , Estudos Transversais , Apraxias/patologia , Afasia Primária Progressiva/patologia , Afasia Primária Progressiva não Fluente/complicações
3.
Brain ; 147(4): 1511-1525, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37988272

RESUMO

It is debated whether primary progressive apraxia of speech (PPAOS) and progressive agrammatic aphasia (PAA) belong to the same clinical spectrum, traditionally termed non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), or exist as two completely distinct syndromic entities with specific pathologic/prognostic correlates. We analysed speech, language and disease severity features in a comprehensive cohort of patients with progressive motor speech impairment and/or agrammatism to ascertain evidence of naturally occurring, clinically meaningful non-overlapping syndromic entities (e.g. PPAOS and PAA) in our data. We also assessed if data-driven latent clinical dimensions with aetiologic/prognostic value could be identified. We included 98 participants, 43 of whom had an autopsy-confirmed neuropathological diagnosis. Speech pathologists assessed motor speech features indicative of dysarthria and apraxia of speech (AOS). Quantitative expressive/receptive agrammatism measures were obtained and compared with healthy controls. Baseline and longitudinal disease severity was evaluated using the Clinical Dementia Rating Sum of Boxes (CDR-SB). We investigated the data's clustering tendency and cluster stability to form robust symptom clusters and employed principal component analysis to extract data-driven latent clinical dimensions (LCD). The longitudinal CDR-SB change was estimated using linear mixed-effects models. Of the participants included in this study, 93 conformed to previously reported clinical profiles (75 with AOS and agrammatism, 12 PPAOS and six PAA). The remaining five participants were characterized by non-fluent speech, executive dysfunction and dysarthria without apraxia of speech or frank agrammatism. No baseline clinical features differentiated between frontotemporal lobar degeneration neuropathological subgroups. The Hopkins statistic demonstrated a low cluster tendency in the entire sample (0.45 with values near 0.5 indicating random data). Cluster stability analyses showed that only two robust subgroups (differing in agrammatism, executive dysfunction and overall disease severity) could be identified. Three data-driven components accounted for 71% of the variance [(i) severity-agrammatism; (ii) prominent AOS; and (iii) prominent dysarthria]. None of these data-driven LCDs allowed an accurate prediction of neuropathology. The severity-agrammatism component was an independent predictor of a faster CDR-SB increase in all the participants. Higher dysarthria severity, reduced words per minute and expressive and receptive agrammatism severity at baseline independently predicted accelerated disease progression. Our findings indicate that PPAOS and PAA, rather than exist as completely distinct syndromic entities, constitute a clinical continuum. In our cohort, splitting the nfvPPA spectrum into separate clinical phenotypes did not improve clinical-pathological correlations, stressing the need for new biological markers and consensus regarding updated terminology and clinical classification.


Assuntos
Afasia Primária Progressiva , Apraxias , Afasia Primária Progressiva não Fluente , Humanos , Afasia de Broca/patologia , Disartria , Apraxias/patologia , Idioma , Fala
4.
medRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961381

RESUMO

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.

5.
Alzheimers Dement ; 19(12): 5817-5836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37270665

RESUMO

Frontotemporal dementia (FTD) is one of the leading causes of dementia before age 65 and often manifests as abnormal behavior (in behavioral variant FTD) or language impairment (in primary progressive aphasia). FTD's exact clinical presentation varies by culture, language, education, social norms, and other socioeconomic factors; current research and clinical practice, however, is mainly based on studies conducted in North America and Western Europe. Changes in diagnostic criteria and procedures as well as new or adapted cognitive tests are likely needed to take into consideration global diversity. This perspective paper by two professional interest areas of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment examines how increasing global diversity impacts the clinical presentation, screening, assessment, and diagnosis of FTD and its treatment and care. It subsequently provides recommendations to address immediate needs to advance global FTD research and clinical practice.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Idoso , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/terapia , Demência Frontotemporal/psicologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Testes Neuropsicológicos , Idioma , Europa (Continente)
7.
J Alzheimers Dis ; 93(3): 1169-1180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182884

RESUMO

BACKGROUND: Primary progressive aphasia (PPA) is a group of neurodegenerative disorders including Alzheimer's disease and frontotemporal dementia characterized by language deterioration. Transcranial direct current stimulation (tDCS) is a non-invasive intervention for brain dysfunction. OBJECTIVE: To evaluate the tolerability and efficacy of tDCS combined with speech therapy in the three variants of PPA. We evaluate changes in fMRI activity in a subset of patients. METHODS: Double-blinded, randomized, cross-over, and sham-controlled tDCS study. 15 patients with PPA were included. Each patient underwent two interventions: a) speech therapy + active tDCS and b) speech therapy + sham tDCS stimulation. A multifocal strategy with anodes placed in the left frontal and parietal regions was used to stimulate the entire language network. Efficacy was evaluated by comparing the results of two independent sets of neuropsychological assessments administered at baseline, immediately after the intervention, and at 1 month and 3 months after the intervention. In a subsample, fMRI scanning was performed before and after each intervention. RESULTS: The interventions were well tolerated. Participants in both arms showed clinical improvement, but no differences were found between active and sham tDCS interventions in any of the evaluations. There were trends toward better outcomes in the active tDCS group for semantic association and reading skills. fMRI identified an activity increase in the right frontal medial cortex and the bilateral paracingulate gyrus after the active tDCS intervention. CONCLUSION: We did not find differences between active and sham tDCS stimulation in clinical scores of language function in PPA patients.


Assuntos
Afasia Primária Progressiva , Estimulação Transcraniana por Corrente Contínua , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Afasia Primária Progressiva/terapia , Projetos de Pesquisa , Semântica , Fonoterapia , Estimulação Transcraniana por Corrente Contínua/métodos
8.
Brain Commun ; 5(2): fcad074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056479

RESUMO

The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-ß 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-ß 42/amyloid-ß 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.

9.
JAMA Neurol ; 80(4): 377-387, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848111

RESUMO

Importance: The neurological substrates of visual artistic creativity (VAC) are unknown. VAC is demonstrated here to occur early in frontotemporal dementia (FTD), and multimodal neuroimaging is used to generate a novel mechanistic hypothesis involving dorsomedial occipital cortex enhancement. These findings may illuminate a novel mechanism underlying human visual creativity. Objective: To determine the anatomical and physiological underpinnings of VAC in FTD. Design, Setting, and Participants: This case-control study analyzed records of 689 patients who met research criteria for an FTD spectrum disorder between 2002 and 2019. Individuals with FTD and emergence of visual artistic creativity (VAC-FTD) were matched to 2 control groups based on demographic and clinical parameters: (1) not visually artistic FTD (NVA-FTD) and (2) healthy controls (HC). Analysis took place between September 2019 to December 2021. Main Outcomes and Measures: Clinical, neuropsychological, genetic, and neuroimaging data were analyzed to characterize VAC-FTD and compare VAC-FTD with control groups. Results: Of 689 patients with FTD, 17 (2.5%) met VAC-FTD inclusion criteria (mean [SD] age, 65 [9.7] years; 10 [58.8%] female). NVA-FTD (n = 51; mean [SD] age, 64.8 [7] years; 25 [49.0%] female) and HC (n = 51; mean [SD] age, 64.5 [7.2] years; 25 [49%] female) groups were well matched to VAC-FTD demographically. Emergence of VAC occurred around the time of onset of symptoms and was disproportionately seen in patients with temporal lobe predominant degeneration (8 of 17 [47.1%]). Atrophy network mapping identified a dorsomedial occipital region whose activity inversely correlated, in healthy brains, with activity in regions found within the patient-specific atrophy patterns in VAC-FTD (17 of 17) and NVA-FTD (45 of 51 [88.2%]). Structural covariance analysis revealed that the volume of this dorsal occipital region was strongly correlated in VAC-FTD, but not in NVA-FTD or HC, with a volume in the primary motor cortex corresponding to the right-hand representation. Conclusions and Relevance: This study generated a novel hypothesis about the mechanisms underlying the emergence of VAC in FTD. These findings suggest that early lesion-induced activation of dorsal visual association areas may predispose some patients to the emergence of VAC under certain environmental or genetic conditions. This work sets the stage for further exploration of enhanced capacities arising early in the course of neurodegeneration.


Assuntos
Demência Frontotemporal , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Criatividade , Estudos de Casos e Controles , Prevalência , Atrofia , Imageamento por Ressonância Magnética
11.
Artigo em Inglês | MEDLINE | ID: mdl-36460480

RESUMO

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown etiology and poorly understood pathophysiology. There is no specific biomarker either for diagnosis or prognosis. The aim of our study was to investigate differentially expressed proteins in the CSF and serum from patients with ALS to determine their role in the disease process and evaluate their utility as diagnostic or prognostic biomarkers. METHODS: We performed mass spectrometry in the CSF from 3 patients with ALS and 3 healthy controls (HCs). The results were compared with motor cortex dysregulated transcripts obtained from 11patients with sporadic ALS and 8 HCs. Candidate proteins were tested using ELISA in the serum of 123 patients with ALS, 30 patients with Alzheimer disease (AD), 28 patients with frontotemporal dementia (FTD), and 102 HCs. Patients with ALS, AD, and FTD were prospectively recruited from January 2003 to December 2020. A group of age-matched HCs was randomly selected from the Sant Pau Initiative on Neurodegeneration cohort of the Sant Pau Memory Unit. RESULTS: Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and osteopontin (Spp1) were differentially expressed in the CSF and the motor cortex transcriptome of patients with ALS compared with that in HCs (p < 0.05). NOD2 and Spp1 levels were significantly higher in sera from patients with ALS than in HCs (p < 0.001). Receiver operating characteristic analysis showed an area under the curve of 0.63 for NOD2 and 0.81 for Spp1. NOD2 levels were significantly lower in patients with AD and FTD than in patients with ALS (p < 0.0001), but we found no significant differences in Spp1 levels between patients with ALS, AD (p = 0.51), and FTD (p = 0.42). We found a negative correlation between Spp1 levels and ALS functional rating scale (r = -0.24, p = 0.009). DISCUSSION: Our discovery-based approach identified NOD2 as a novel biomarker in ALS and adds evidence to the contribution of Spp1 in the disease process. Both proteins are involved in innate immunity and autophagy and are increased in the serum from patients with ALS. Our data support a relevant role of neuroinflammation in the pathophysiology of the disease and may identify targets for disease-modifying treatments in ALS. Further longitudinal studies should investigate the diagnostic and prognostic value of NOD2 and Spp1 in clinical practice.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Osteopontina , Doenças Neuroinflamatórias , Proteína Adaptadora de Sinalização NOD2/genética
12.
Res Sq ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168408

RESUMO

BACKGROUND: Recently developed blood markers for Alzheimer's disease (AD) detection have high accuracy but usually require ultra-sensitive analytic tools not commonly available in clinical laboratories, and their performance in clinical practice is unknown. METHODS: We analyzed plasma samples from 290 consecutive participants that underwent lumbar puncture in routine clinical practice in a specialized memory clinic (66 cognitively unimpaired, 130 participants with mild cognitive impairment, and 94 with dementia). Participants were classified as amyloid positive (A+) or negative (A-) according to CSF Aß1-42/Aß1-40 ratio. Plasma pTau217, pTau181, Aß1-42 and Aß1-40 were measured in the fully-automated LUMIPULSE platform. We used linear regression to compare plasma biomarkers concentrations between A + and A- groups, evaluated Spearman's correlation between plasma and CSF and performed ROC analyses to assess their diagnostic accuracy to detect brain amyloidosis as determined by CSF Aß1-42/Aß1-40 ratio. We analyzed the potential of pTau217 to predict amyloidosis in CSF. RESULTS: Plasma pTau217 and pTau181 concentration were higher in A + than A- while the plasma Aß1-42/Aß1-40 ratio was lower in A + compared to A-. pTau181 and the Aß1-42/Aß1-40 ratio showed moderate correlation between plasma and CSF (Rho = 0.66 and 0.69, respectively). The areas under the ROC curve to discriminate A + from A- participants were 0.94 (95% CI 0.92-0.97) for pTau217, and 0.88 (95% CI 0.84-0.92) for both pTau181 and Aß1-42/Aß1-40. Chronic kidney disease (CKD) was related to increased plasma biomarker concentrations, but ratios were less affected. Plasma pTau217 had the highest fold change (x4.2) and showed high predictive capability in discriminating A + from A-, having 4-7% misclassification rate. The global accuracy of plasma pTau217 using a two-threshold approach was robust in symptomatic groups, exceeding 90%. CONCLUSION: The evaluation of blood biomarkers on an automated platform exhibited high diagnostic accuracy for AD pathophysiology, and pTau217 showed excellent diagnostic accuracy to identify participants with AD in a consecutive sample representing the routine clinical practice in a specialized memory unit.

14.
J Neurosci Res ; 100(10): 1862-1875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35766328

RESUMO

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Bainha de Mielina , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Humanos , Bainha de Mielina/patologia
15.
Front Neurol ; 13: 861585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557621

RESUMO

The progressive supranuclear palsy (PSP) syndrome encompasses different entities. PSP disease of sporadic origin is the most frequent presentation, but different genetic mutations can lead either to monogenic variants of PSP disease, or to other conditions with a different pathophysiology that eventually may result in PSP phenotype. PSP syndrome of monogenic origin is poorly understood due to the low prevalence and variable expressivity of some mutations. Through this review, we describe how early age of onset, family history of early dementia, parkinsonism, dystonia, or motor neuron disease among other clinical features, as well as some neuroimaging signatures, may be the important clues to suspect PSP syndrome of monogenic origin. In addition, a diagnostic algorithm is proposed that may be useful to guide the genetic diagnosis once there is clinical suspicion of a monogenic PSP syndrome.

16.
Mol Neurodegener ; 17(1): 29, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395770

RESUMO

BACKGROUND: Synapse degeneration is an early event in pathological frontotemporal lobar degeneration (FTLD). Consequently, a surrogate marker of synapse loss could be used to monitor early pathologic changes in patients with underlying FTLD. The aim of this study was to evaluate the relationship of antemortem cerebrospinal fluid (CSF) levels of 8 synaptic proteins with postmortem global tau and TDP-43 burden and cognitive performance and to assess their diagnostic capacity in a neuropathological FTLD cohort. METHODS: We included patients with a neuropathological confirmation of FTLD-Tau (n = 24, mean age-at-CSF 67 years ± 11), FTLD-TDP (n = 25, 66 years ± 9) or AD (n = 25, 73 years ± 6) as well as cognitively normal controls (n = 35, 69 years ± 7) from the Penn FTD Center and ADRC. We used a semi-quantitative measure of tau and TDP-43 inclusions to quantify pathological burden across 16 brain regions. Statistical methods included Spearman rank correlations, one-way analysis of covariance, ordinal regression, step-wise multiple linear regression and receiver-operating characteristic curves. RESULT: CSF calsyntenin-1 and neurexin-2a were correlated in all patient groups (rs = .55 to .88). In FTLD-TDP, we observed low antemortem CSF levels of calsyntenin-1 and neurexin-2a compared to AD (.72-fold, p = .001, .77-fold, p = .04, respectively) and controls (.80-fold, p = .02, .78-fold, p = .02, respectively), which were inversely associated with post-mortem global TDP-43 burden (regression r2 = .56, p = .007 and r2 = .57, p = .006, respectively). A multimarker panel including calsyntenin-1 was associated with TDP-43 burden (r2 = .69, p = .003) and MMSE score (r2 = .19, p = .03) in FTLD. A second multimarker synaptic panel, also including calsyntenin-1, was associated with MMSE score in FTLD-tau (r2 = .49, p = .04) and improved diagnostic performance to discriminate FTLD-Tau and FTLD-TDP neuropathologic subtypes (AUC = .83). CONCLUSION: These synaptic panels have potential in the differential diagnosis of FTLD neuropathologic subtypes and as surrogate markers of cognitive performance in future clinical trials targeting TDP-43 or tau.


Assuntos
Proteínas de Ligação a DNA , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteínas tau , Idoso , Biomarcadores/líquido cefalorraquidiano , Cognição , Proteínas de Ligação a DNA/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/patologia , Humanos , Pessoa de Meia-Idade , Proteínas tau/líquido cefalorraquidiano
17.
JAMA Netw Open ; 5(4): e229588, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486397

RESUMO

Importance: The accurate diagnosis of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) is hampered by imperfect clinical-pathological correlations. Objective: To assess and compare the diagnostic value of the magnetic resonance parkinsonism index (MRPI) and other magnetic resonance imaging-based measures of cerebral atrophy to differentiate between PSP, CBD, and other neurodegenerative diseases. Design, Setting, and Participants: This prospective diagnostic study included participants with 4-repeat tauopathies (4RT), PSP, CBD, other neurodegenerative diseases and available MRI who appeared in the University of California, San Francisco, Memory and Aging Center database. Data were collected from October 27, 1994, to September 29, 2019. Data were analyzed from March 1 to September 14, 2021. Main Outcomes and Measures: The main outcome of this study was the neuropathological diagnosis of PSP or CBD. The clinical diagnosis at the time of the MRI acquisition was noted. The imaging measures included the MRPI, cortical thickness, subcortical volumes, including the midbrain, pons, and superior cerebellar peduncle volumes. Multinomial logistic regression models (MLRM) combining different cortical and subcortical regions were defined to discriminate between PSP, CBD, and other pathologies. The areas under the receiver operating characteristic curves (AUROC) and cutoffs were calculated to differentiate between PSP, CBD, and other diseases. Results: Of the 326 included participants, 176 (54%) were male, and the mean (SD) age at MRI was 64.1 (8.0) years. The MRPI showed good diagnostic accuracy for the differentiation between PSP and all other pathologies (accuracy, 87%; AUROC, 0.90; 95% CI, 0.86-0.95) and between 4RT and other pathologies (accuracy, 80%; AUROC, 0.82; 95% CI, 0.76-0.87), but did not allow the discrimination of participants with CBD. Its diagnostic accuracy was lower in the subgroup of patients without the canonical PSP-Richardson syndrome (PSP-RS) or probable corticobasal syndrome (CBS) at MRI. MLRM combining cortical and subcortical measurements showed the highest accuracy for the differentiation between PSP and other pathologies (accuracy, 95%; AUROC, 0.98; 95% CI, 0.97-0.99), CBD and other pathologies (accuracy, 83%; AUROC, 0.86; 95% CI, 0.81-0.91), 4RT and other pathologies (accuracy, 89%; AUROC, 0.94; 95% CI, 0.92-0.97), and PSP and CBD (accuracy, 91%; AUROC, 0.95; 95% CI, 0.91-0.99), even in participants without PSP-RS or CBS at MRI. Conclusions and Relevance: In this study, the combination of widely available cortical and subcortical measures of atrophy on MRI discriminated between PSP, CBD, and other pathologies and could be used to support the diagnosis of 4RT in clinical practice.


Assuntos
Degeneração Corticobasal , Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Atrofia/diagnóstico por imagem , Cerebelo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Doenças Neurodegenerativas/diagnóstico por imagem , Estudos Prospectivos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia
18.
Alzheimers Res Ther ; 14(1): 20, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105351

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) Aß1-42 levels and the Aß1-42/Aß1-40 ratio are markers of amyloid pathology, but previous studies suggest that their levels might be influenced by additional pathophysiological processes. AIMS: To compare Aß1-42 and the Aß1-42/Aß1-40 ratio in CSF in different neurodegenerative disorders and study their association with other biomarkers (tTau, pTau181, and NfL) and with cognitive and functional progression. METHODS: We included all participants from the Sant Pau Initiative on Neurodegeneration (SPIN) with CSF Aß1-42 and Aß1-42/Aß1-40. Participants had diagnoses of Alzheimer's disease (AD), dementia with Lewy bodies, frontotemporal lobar degeneration-related syndromes, non-neurodegenerative conditions, or were cognitively normal. We classified participants as "positive" or "negative" according to each marker. We compared CSF levels of tTau, pTau181, and NfL between concordant and discordant groups through ANCOVA and assessed differences in cognitive (MMSE, FCSRT) and functional (GDS, CDR-SOB) progression using Cox regression and linear-mixed models. RESULTS: In the 1791 participants, the agreement between Aß1-42 and Aß1-42/Aß1-40 was 78.3%. The Aß1-42/Aß1-40 ratio showed a stronger correlation with tTau and pTau181 than Aß1-42 and an agreement with tTau and pTau181 of 73.1% and 77.1%, respectively. Participants with a low Aß1-42/Aß1-40 ratio showed higher tTau and pTau181 and worse cognitive and functional prognosis, regardless of whether they were positive or negative for Aß1-42. The results were consistent across stages, diagnostic categories, and use of different cutoffs. CONCLUSION: Although Aß1-42 and Aß1-42/Aß1-40 are considered markers of the same pathophysiological pathway, our findings provide evidence favoring the use of the Aß1-42/Aß1-40 ratio in clinical laboratories in the context of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas tau , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
19.
Alzheimers Res Ther ; 14(1): 27, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139897

RESUMO

BACKGROUND: Cortical mean diffusivity is a novel imaging metric sensitive to early changes in neurodegenerative syndromes. Higher cortical mean diffusivity values reflect microstructural disorganization and have been proposed as a sensitive biomarker that might antedate macroscopic cortical changes. We aimed to test the hypothesis that cortical mean diffusivity is more sensitive than cortical thickness to detect cortical changes in primary progressive aphasia (PPA). METHODS: In this multicenter, case-control study, we recruited 120 patients with PPA (52 non-fluent, 31 semantic, and 32 logopenic variants; and 5 GRN-related PPA) as well as 89 controls from three centers. The 3-Tesla MRI protocol included structural and diffusion-weighted sequences. Disease severity was assessed with the Clinical Dementia Rating scale. Cortical thickness and cortical mean diffusivity were computed using a surface-based approach. RESULTS: The comparison between each PPA variant and controls revealed cortical mean diffusivity increases and cortical thinning in overlapping regions, reflecting the canonical loci of neurodegeneration of each variant. Importantly, cortical mean diffusivity increases also expanded to other PPA-related areas and correlated with disease severity in all PPA groups. Cortical mean diffusivity was also increased in patients with very mild PPA when only minimal cortical thinning was observed and showed a good correlation with measures of disease severity. CONCLUSIONS: Cortical mean diffusivity shows promise as a sensitive biomarker for the study of the neurodegeneration-related microstructural changes in PPA.


Assuntos
Afasia Primária Progressiva , Afasia Primária Progressiva/diagnóstico por imagem , Estudos de Casos e Controles , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética
20.
Transl Neurodegener ; 10(1): 50, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893073

RESUMO

BACKGROUND: Astrocytes play an essential role in neuroinflammation and are involved in the pathogenesis of neurodenegerative diseases. Studies of glial fibrillary acidic protein (GFAP), an astrocytic damage marker, may help advance our understanding of different neurodegenerative diseases. In this study, we investigated the diagnostic performance of plasma GFAP (pGFAP), plasma neurofilament light chain (pNfL) and their combination for frontotemporal dementia (FTD) and Alzheimer's disease (AD) and their clinical utility in predicting disease progression. METHODS: pGFAP and pNfL concentrations were measured in 72 FTD, 56 AD and 83 cognitively normal (CN) participants using the Single Molecule Array technology. Of the 211 participants, 199 underwent cerebrospinal (CSF) analysis and 122 had magnetic resonance imaging. We compared cross-sectional biomarker levels between groups, studied their diagnostic performance and assessed correlation between CSF biomarkers, cognitive performance and cortical thickness. The prognostic performance was investigated, analyzing cognitive decline  through group comparisons by tertile. RESULTS: Unlike pNfL, which was increased similarly in both clinical groups, pGFAP was increased in FTD but lower than in AD (all P < 0.01). Combination of both plasma markers improved the diagnostic performance to discriminate FTD from AD (area under the curve [AUC]: combination 0.78; pGFAP 0.7; pNfL 0.61, all P < 0.05). In FTD, pGFAP correlated with cognition, CSF and plasma NfL, and cortical thickness (all P < 0.05). The higher tertile of pGFAP was associated with greater change in MMSE score and poor cognitive outcome during follow-up both in FTD (1.40 points annually, hazard ratio [HR] 3.82, P < 0.005) and in AD (1.20 points annually, HR 2.26, P < 0.005). CONCLUSIONS: pGFAP and pNfL levels differ in FTD and AD, and their combination is useful for distinguishing between the two diseases. pGFAP could also be used to track disease severity and predict greater cognitive decline during follow-up in patients with FTD.


Assuntos
Demência Frontotemporal , Proteína Glial Fibrilar Ácida , Estudos Transversais , Demência Frontotemporal/diagnóstico por imagem , Proteína Glial Fibrilar Ácida/análise , Humanos , Filamentos Intermediários , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA