Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 29112-29120, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761179

RESUMO

Although thin-film composite membranes have achieved great success in CO2 separation, further improvements in the CO2 permeance are required to reduce the size and cost of the CO2 separation process. Herein, we report the fabrication of composite membranes with high CO2 permeability using a laser-patterned porous membrane as the support membrane. High-aspect-ratio micropatterns with well-defined micropores on their surface were carved on microporous polymer supports by a direct laser writing process using a short-pulsed laser. By using a Galvano scanner and optimizing the laser conditions and target materials, in-plane micropatterns, such as microhole arrays, microline grating, microlattices, and out-of-plane hierarchical micropatterns, were created on porous membranes. An aqueous suspension of hydrogel microparticles doped with an amine-based mobile carrier was sprayed onto the patterned surface to form a defect-free thin separation layer. The surface area of the separation layer on the patterned support is up to 80% larger than that of flat pristine membranes, resulting in a 52% higher CO2 permeance (1106 GPU) with a CO2/N2 selectivity of 172. The laser-patterned porous membranes allow the development of inexpensive and high-performance functional membranes not only for CO2 separation but also for other applications, such as water treatment, cell culture, micro-TAS, and membrane reactors.

2.
ACS Appl Mater Interfaces ; 16(6): 7709-7720, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38311921

RESUMO

Here, we report the design rationale of CO2 separation membranes with micropatterned surface structures. Thin film composite (TFC) membranes with micropatterned surface structures were fabricated by spray coating amine-containing hydrogel particles on the top of micropatterned porous support membranes, which were synthesized by a polymerization-induced phase separation process in a micromold (PIPsµM). The pore size of the support membranes was optimized by tuning the proportion of good and poor solvents for the polymerization process so that the microgels would be assembled as a defect-free separation layer. The relationship between the size of the micropatterned structures on the surface of the support membrane and the thickness of the separation layer was optimized to maximize the surface area of the separation layer. The rationally designed micropatterned TFC membrane showed a CO2 permeability (835.8 GPU) proportional to the increase in surface area relative to the flat membrane with a high CO2/N2 selectivity of 58.7. The rational design for micropatterned TFC membranes will enable the development of inexpensive and high-performance functional membranes not only for CO2 separation but also for other applications such as water treatment and membrane reactors.

3.
ACS Appl Mater Interfaces ; 13(25): 30030-30038, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139838

RESUMO

The development of robust and thin CO2 separation membranes that allow fast and selective permeation of CO2 will be crucial for rebalancing the global carbon cycle. Hydrogels are attractive membrane materials because of their tunable chemical properties and exceptionally high diffusion coefficients for solutes. However, their fragility prevents the fabrication of thin defect-free membranes suitable for gas separation. Here, we report the assembly of defect-free hydrogel nanomembranes for CO2 separation. Such membranes can be prepared by coating an aqueous suspension of colloidal hydrogel microparticles (microgels) onto a flat, rough, or micropatterned porous support as long as the pores are hydrophilic and the pore size is smaller than the diameter of the microgels. The deformability of the microgel particles enables the autonomous assembly of defect-free 30-50 nm-thick membrane layers from deformed ∼15 nm-thick discoidal particles. Microscopic analysis established that the penetration of water into the pores driven by capillary force assists the assembly of a defect-free dense hydrogel layer on the pores. Although the dried films did not show significant CO2 permeance even in the presence of amine groups, the permeance dramatically increased when the membranes are adequately hydrated to form a hydrogel. This result indicated the importance of free water in the membranes to achieve fast diffusion of bicarbonate ions. The hydrogel nanomembranes consisting of amine-containing microgel particles show selective CO2 permeation (850 GPU, αCO2/N2 = 25) against post-combustion gases. Acid-containing microgel membranes doped with amines show highly selective CO2 permeation against post-combustion gases (1010 GPU, αCO2/N2 = 216) and direct air capture (1270 GPU, αCO2/N2 = 2380). The membrane formation mechanism reported in this paper will provide insights into the self-assembly of soft matters. Furthermore, the versatile strategy of fabricating hydrogel nanomembranes by the autonomous assembly of deformable microgels will enable the large-scale manufacturing of high-performance separation membranes, allowing low-cost carbon capture from post-combustion gases and atmospheric air.

4.
Angew Chem Int Ed Engl ; 53(10): 2654-7, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24458786

RESUMO

Hydrogel films composed of temperature-responsive microgel particles (GPs) containing amine groups work as stimuli-responsive carbon dioxide absorbent with a high capacity of approximately 1.7 mmol g(-1). Although the dried films did not show significant absorption, the reversible absorption capacity dramatically increased by adding a small amount of water (1 mL g(-1)). The absorption capacity was independent of the amount of added water beyond 1 mL g(-1), demonstrating that the GP films can readily be used under wet conditions. The amount of CO2 absorbed by the GP films was proportional to their thickness up to 200-300 µm (maximum capacity of about 2 L m(-2) . Furthermore, the films consisting of GPs showed faster and greater absorption and desorption of CO2 than that of monolithic hydrogel films. These results indicated the importance of a fast stimulus response rate of the films that are composed of GPs in order to achieve long-range and fast diffusion of bicarbonate ions. Our study revealed the potential of stimuli-responsive GP films as energy-efficient absorbents to sequester CO2 from high-humidity exhaust gases.

5.
J Am Chem Soc ; 134(44): 18177-80, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23092398

RESUMO

Herein we report that an aqueous solution of temperature-responsive micro- and nanogel particles (GPs) consisting of N-isopropylacrylamide (NIPAm) and N-[3-(dimethylamino)propyl]methacrylamide (DMAPM) reversibly absorbs and desorbs CO(2) via a phase transition induced by cooling and heating cycles (30-75 °C). Below the phase-transition temperature, most of the amines in the swollen GPs are capable of forming ion pairs with absorbed bicarbonate ions. However, above the phase-transition temperature, shrinkage of the GPs lowers the pK(a) and the number of amine groups exposed to water, thereby resulting in almost complete desorption of CO(2). The GPs can reversibly absorb more than the DMAPM monomer and polymer without NIPAm, which indicates the importance of the temperature-responsive phase transition of polymers in determining the degree of absorption. The results show the potential of temperature-responsive polymer solutions as absorbents to sequester CO(2) at a low energy cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA