Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biol Pharm Bull ; 47(7): 1350-1359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085074

RESUMO

Indigo naturalis (IN), derived from the leaves of the indigo plant, is a traditional Chinese medicine that has historically been used for its anti-inflammatory properties in the treatment of various diseases, including ulcerative colitis (UC). However, long-term use of IN in UC patients is incontrovertibly associated with the onset of pulmonary arterial hypertension (PAH). To investigate the mechanisms by which IN induces PAH, we focused on the raw material of IN, indigo leaves (IL). Only the condition of long-term chronic (6 months) and high-dose (containing 5% IL in the control diet) administration of IL induced medial thickening in the pulmonary arteries without right ventricular hypertrophy in our rat model. IL administration for a month did not induce pulmonary arterial remodeling but increased endothelin-1 (ET-1) expression levels within endothelial cell (EC) layers in the lungs. Gene Expression Omnibus analysis showed that ET-1 is a key regulator of PAH and that the IL component indican and its metabolite IS induced ET-1 mRNA expression via reactive oxygen species-dependent mechanism. We identified the roles of indican and IS in ET-1 expression in ECs, which were linked to pulmonary arterial remodeling in an animal model.


Assuntos
Endotelina-1 , Hipertrofia Ventricular Direita , Folhas de Planta , Artéria Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Masculino , Endotelina-1/metabolismo , Remodelação Vascular/efeitos dos fármacos , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Ratos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
2.
Fitoterapia ; 174: 105877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417680

RESUMO

Phytochemical study on the roots of a medicinal plant Ferula communis L. (Apiaceae) resulted in the isolation of 20 sesquiterpenes including 12 previously undescribed compounds, dauferulins A-L (1-12). The detailed spectroscopic analysis revealed 1-12 to be daucane-type sesquiterpenes with a p-methoxybenzoyloxy group at C-6. The absolute configurations of 1-12 were deduced by analysis of the ECD spectra. Dauferulins A-L (1-12), known sesquiterpenes (13-20), and analogues (14a-14l) derived from 6-O-p-methoxybenzoyl-10α-angeloyloxy-jeaschkeanadiol (14) were evaluated for their effects on AMPK phosphorylation in human hepatoma HepG2 cells as well as inhibitory activities against erastin-induced ferroptosis on human hepatoma Hep3B cells and IL-1ß production from LPS-treated murine microglial cells.


Assuntos
Carcinoma Hepatocelular , Ferula , Neoplasias Hepáticas , Sesquiterpenos , Humanos , Animais , Camundongos , Ferula/química , Carcinoma Hepatocelular/tratamento farmacológico , Estrutura Molecular , Sesquiterpenos/química , Raízes de Plantas/química
3.
J Pharmacol Sci ; 153(4): 232-242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973221

RESUMO

A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Hipóxia/metabolismo , RNA Interferente Pequeno , Biologia Computacional , Neoplasias Pancreáticas
4.
Front Cardiovasc Med ; 10: 1187490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711550

RESUMO

Background: The deSUMOylase sentrin-specific isopeptidase 2 (SENP2) plays a crucial role in atheroprotection. However, the phosphorylation of SENP2 at T368 under disturbed flow (D-flow) conditions hinders its nuclear function and promotes endothelial cell (EC) activation. SUMOylation has been implicated in D-flow-induced endothelial-to-mesenchymal transition (endoMT), but the precise role of SENP2 in counteracting this process remains unclear. Method: We developed a phospho-specific SENP2 S344 antibody and generated knock-in (KI) mice with a phospho-site mutation of SENP2 S344A using CRISPR/Cas9 technology. We then investigated the effects of SENP2 S344 phosphorylation under two distinct flow patterns and during hypercholesteremia (HC)-mediated EC activation. Result: Our findings demonstrate that laminar flow (L-flow) induces phosphorylation of SENP2 at S344 through the activation of checkpoint kinase 1 (CHK1), leading to the inhibition of ERK5 and p53 SUMOylation and subsequent suppression of EC activation. We observed a significant increase in lipid-laden lesions in both the aortic arch (under D-flow) and descending aorta (under L-flow) of female hypercholesterolemic SENP2 S344A KI mice. In male hypercholesterolemic SENP2 S344A KI mice, larger lipid-laden lesions were only observed in the aortic arch area, suggesting a weaker HC-mediated atherogenesis in male mice compared to females. Ionizing radiation (IR) reduced CHK1 expression and SENP2 S344 phosphorylation, attenuating the pro-atherosclerotic effects observed in female SENP2 S344A KI mice after bone marrow transplantation (BMT), particularly in L-flow areas. The phospho-site mutation SENP2 S344A upregulates processes associated with EC activation, including inflammation, migration, and proliferation. Additionally, fibrotic changes and up-regulated expression of EC marker genes were observed. Apoptosis was augmented in ECs derived from the lungs of SENP2 S344A KI mice, primarily through the inhibition of ERK5-mediated expression of DNA damage-induced apoptosis suppressor (DDIAS). Summary: In this study, we have revealed a novel mechanism underlying the suppressive effects of L-flow on EC inflammation, migration, proliferation, apoptosis, and fibrotic changes through promoting CHK1-induced SENP2 S344 phosphorylation. The phospho-site mutation SENP2 S344A responds to L-flow through a distinct mechanism, which involves the upregulation of both mesenchymal and EC marker genes.

5.
Bioorg Med Chem Lett ; 95: 129484, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716415

RESUMO

Hypoxia in cancer is important in the development of cancer-selective medicines. Here, a novel hypoxia-responsible dual-prodrug is described. We designed and synthesized 2-nitroimidazole derivatives which spontaneously release both a PYG inhibitor and gemcitabine under hypoxic conditions. One such derivative, a prodrug 9 was found to be stable against chemical and enzymatic hydrolysis, and upon chemical reduction of the nitro group on imidazole, successfully releases both drugs. In an in vitro proliferation assay using human pancreatic cells, compound 9 exhibited significant anti-proliferative effects in hypoxia but fewer effects in normoxia. Consequently, prodrug 9 should be useful for cancer treatment due to its improved cancer selectivity and potential to overcome drug resistance.

6.
J Pharmacol Sci ; 153(1): 31-37, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524452

RESUMO

BACKGROUND AND PURPOSE: TJ-17 (Goreisan), a traditional Japanese Kampo medicine, has been generally used to treat edema, such as heart failure, due to its diuretic effect. In the present study, we investigate the effects of TJ-17 on chronic kidney disease (CKD). METHODS: We the preventive action of TJ-17 against acute kidney injury (AKI) transition to CKD in vivo using a folic acid (FA)-induced mouse model. Mice were treated with food containing TJ-17 at 48 h after FA intraperitoneal injection (AKI phase). RESULTS: Histological analysis, as well as renal function and renal injury markers, deteriorated in mice with FA-induced CKD and were ameliorated by TJ-17 treatment. Increased levels of inflammatory cytokines and macrophage infiltration were also alleviated in mice treated with TJ-17. Renal fibrosis, a crucial factor in CKD, was induced by FA administration and inhibited by TJ-17 treatment. Pretreatment with TJ-17 did not exert an inhibitory effect on FA-induced AKI. The increase in urinary volume in FA-induced CKD mice was ameliorated by TJ-17 treatment, with a concurrent correction of reduced aquaporins expression in the kidney. CONCLUSION: TJ-17 may have a novel preventive effect against inflammation, oxidative stress, and fibrosis, contributing to innovation in the treatment of CKD.

7.
Cancer Immunol Res ; 11(9): 1168-1183, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307577

RESUMO

Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.7 and B16F10 murine models of melanoma but differentially regulates tumor growth, hypoxia, and the immune response. We found that exercise suppressed tumor growth and increased CD8+ T-cell infiltration in YUMMER but not in B16F10 tumors. Single-cell RNA sequencing and flow cytometry revealed exercise modulated the number and phenotype of tumor-infiltrating CD8+ T cells and myeloid cells. Specifically, exercise caused a phenotypic shift in the tumor-associated macrophage population and increased the expression of MHC class II transcripts. We further demonstrated that ERK5 S496A knock-in mice, which are phosphorylation deficient at the S496 residue, "mimicked" the exercise effect when unexercised, yet when exercised, these mice displayed a reversal in the effect of exercise on tumor growth and macrophage polarization compared with wild-type mice. Taken together, our results reveal tumor-specific differences in the immune response to exercise and show that ERK5 signaling via the S496 residue plays a crucial role in exercise-induced tumor microenvironment changes. See related Spotlight by Betof Warner, p. 1158.


Assuntos
Melanoma , Proteína Quinase 7 Ativada por Mitógeno , Animais , Camundongos , Linfócitos T CD8-Positivos , Melanoma/genética , Fenótipo , Fosforilação , Microambiente Tumoral
8.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37264926

RESUMO

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
9.
Front Cardiovasc Med ; 10: 1133611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008337

RESUMO

Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.

10.
Life Sci ; 321: 121590, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940907

RESUMO

AIMS: Peroxisome proliferator-activated receptor-alpha (PPARα) levels are markedly lower in the kidneys of chronic kidney disease (CKD) patients. Fibrates (PPARα agonists) are therapeutic agents against hypertriglyceridemia and potentially against CKD. However, conventional fibrates are eliminated by renal excretion, limiting their use in patients with impaired renal function. Here, we aimed to evaluate the renal risks associated with conventional fibrates via clinical database analysis and investigate the renoprotective effects of pemafibrate, a novel selective PPARα modulator mainly excreted into the bile. MAIN METHODS: The risks associated with conventional fibrates (fenofibrate, bezafibrate) to the kidneys were evaluated using the Food and Drug Administration Adverse Event Reporting System. Pemafibrate (1 or 0.3 mg/kg/day) was administered daily using an oral sonde. Its renoprotective effects were examined in unilateral ureteral obstruction (UUO)-induced renal fibrosis model mice (UUO mice) and adenine-induced CKD model mice (CKD mice). KEY FINDINGS: The ratios of glomerular filtration rate decreased and blood creatinine increased were markedly higher after conventional fibrate use. Pemafibrate administration suppressed increased gene expressions of collagen-I, fibronectin, and interleukin 1 beta (IL-1ß) in the kidneys of UUO mice. In CKD mice, it suppressed increased plasma creatinine and blood urea nitrogen levels and decreased red blood cell count, hemoglobin, and hematocrit levels, along with renal fibrosis. Moreover, it inhibited the upregulation of monocyte chemoattractant protein-1, IL-1ß, tumor necrosis factor-alpha, and IL-6 in the kidneys of CKD mice. SIGNIFICANCE: These results demonstrated the renoprotective effects of pemafibrate in CKD mice, confirming its potential as a therapeutic agent for renal disorders.


Assuntos
Fenofibrato , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , PPAR alfa/metabolismo , Creatinina/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Fenofibrato/farmacologia , Fibrose , Obstrução Ureteral/patologia
11.
Front Cardiovasc Med ; 9: 988713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426217

RESUMO

Radiation therapy (RT) to the chest increases the patients' risk of cardiovascular disease (CVD). A complete understanding of the mechanisms by which RT induces CVD could lead to specific preventive, therapeutic approaches. It is becoming evident that both genotoxic chemotherapy agents and radiation induce mitochondrial dysfunction and cellular senescence. Notably, one of the common phenotypes observed in cancer survivors is accelerated senescence, and immunosenescence is closely related to both cancer risk and CVD development. Therefore, suppression of immunosenescence can be an ideal target to prevent cancer treatment-induced CVD. However, the mechanism(s) by which cancer treatments induce immunosenescence are incompletely characterized. We isolated peripheral blood mononuclear cells (PBMCs) before and 3 months after RT from 16 thoracic cancer patients. We characterized human immune cell lineages and markers of senescence, DNA damage response (DDR), efferocytosis, and determinants of clonal hematopoiesis of indeterminant potential (CHIP), using mass cytometry (CyTOF). We found that the frequency of the B cell subtype was decreased after RT. Unsupervised clustering of the CyTOF data identified 138 functional subsets of PBMCs. Compared with baseline, RT increased TBX21 (T-bet) expression in the largest B cell subset of Ki67-/DNMT3a+naïve B cells, and T-bet expression was correlated with phosphorylation of p90RSK expression. CD38 expression was also increased in naïve B cells (CD27-) and CD8+ effector memory CD45RA T cells (TEMRA). In vitro, we found the critical role of p90RSK activation in upregulating (1) CD38+/T-bet+ memory and naïve B, and myeloid cells, (2) senescence-associated ß-gal staining, and (3) mitochondrial reactive oxygen species (ROS) after ionizing radiation (IR). These data suggest the crucial role of p90RSK activation in immunosenescence. The critical role of p90RSK activation in immune cells and T-bet induction in upregulating atherosclerosis formation has been reported. Furthermore, T-bet directly binds to the CD38 promoter region and upregulates CD38 expression. Since both T-bet and CD38 play a significant role in the process of immunosenescence, our data provide a cellular and molecular mechanism that links RT-induced p90RSK activation and the immunosenescence with T-bet and CD38 induction observed in thoracic cancer patients treated by RT and suggests that targeting the p90RSK/T-bet/CD38 pathway could play a role in preventing the radiation-associated CVD and improving cancer prognosis by inhibiting immunosenescence.

12.
Front Cardiovasc Med ; 9: 791143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082118

RESUMO

We have shown that membrane-associated guanylate kinase with inverted domain structure-1 (MAGI1), a scaffold protein with six PSD95/DiscLarge/ZO-1 (PDZ) domains, is involved in the regulation of endothelial cell (EC) activation and atherogenesis in mice. In addition to causing acute respiratory disease, influenza A virus (IAV) infection plays an important role in atherogenesis and triggers acute coronary syndromes and fatal myocardial infarction. Therefore, the aim of this study is to investigate the function and regulation of MAGI1 in IAV-induced EC activation. Whereas, EC infection by IAV increases MAGI1 expression, MAGI1 depletion suppresses IAV infection, suggesting that the induction of MAGI1 may promote IAV infection. Treatment of ECs with oxidized low-density lipoprotein (OxLDL) increases MAGI1 expression and IAV infection, suggesting that MAGI1 is part of the mechanistic link between serum lipid levels and patient prognosis following IAV infection. Our microarray studies suggest that MAGI1-depleted ECs increase protein expression and signaling networks involve in interferon (IFN) production. Specifically, infection of MAGI1-null ECs with IAV upregulates expression of signal transducer and activator of transcription 1 (STAT1), interferon b1 (IFNb1), myxovirus resistance protein 1 (MX1) and 2'-5'-oligoadenylate synthetase 2 (OAS2), and activate STAT5. By contrast, MAGI1 overexpression inhibits Ifnb1 mRNA and MX1 expression, again supporting the pro-viral response mediated by MAGI1. MAGI1 depletion induces the expression of MX1 and virus suppression. The data suggests that IAV suppression by MAGI1 depletion may, in part, be due to MX1 induction. Lastly, interferon regulatory factor 3 (IRF3) translocates to the nucleus in the absence of IRF3 phosphorylation, and IRF3 SUMOylation is abolished in MAGI1-depleted ECs. The data suggests that MAGI1 inhibits IRF3 activation by maintaining IRF3 SUMOylation. In summary, IAV infection occurs in ECs in a MAGI1 expression-dependent manner by inhibiting anti-viral responses including STATs and IRF3 activation and subsequent MX1 induction, and MAGI1 plays a role in EC activation, and in upregulating a pro-viral response. Therefore, the inhibition of MAGI1 is a potential therapeutic target for IAV-induced cardiovascular disease.

13.
Phytomedicine ; 103: 154213, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671634

RESUMO

BACKGROUND AND PURPOSE: Chinese herbal medicine has been developed as the traditional Japanese Kampo medicine, and it has been widely used to cure various symptoms in clinical practice. However, only a few studies are currently available on the effect of the Kampo medicine on renal disease. Nephrotoxicity is one of major side effect of cisplatin, the first metal-based anticancer drug. In the present study, we examined the effect of the Kampo medicine against cisplatin-induced nephrotoxicity (CIN). METHODS: First, we screened the ethical Kampo extract formulation having positive effect against CIN using HK-2 cells. Next, we examined the preventive action of the selected ethical Kampo extract formulation against CIN in vivo using a mouse model. RESULTS: Cisplatin-induced cell death was significantly suppressed by TJ-43 (Rikkunshito) and TJ-90 (Seihaito); however, cisplatin-induced cleaved caspase-3 expression was inhibited only by TJ-90. In an in vivo mouse model of cisplatin-induced kidney injury with dysfunction and increased inflammatory cytokine expression, TJ-90 showed amelioration of these damaging effects. Cisplatin-induced apoptosis and superoxide production were inhibited by treatment with TJ-90. The expression of cleaved caspase-3, 4-hydroxynonenal, and MAPK phosphorylation increased after cisplatin administration, but decreased after the administration of TJ-90. Among 16 crude drug extracts present in Seihaito, Bamboo Culm (Chikujo in Japanese) inhibited cisplatin-induced cell death and cleaved caspase-3 expression in HK-2 cells. Moreover, the anti-tumor effect of cisplatin was not affected by TJ-90 co-treatment in cancer cell lines. CONCLUSION: TJ-90 might have a novel preventive action against CIN through the suppression of inflammation, apoptosis, and oxidative stress without interfering with the anti-tumor effect of cisplatin. Collectively, these findings might contribute to innovations in supportive care for cancer treatment-related side effects.


Assuntos
Cisplatino , Medicamentos de Ervas Chinesas , Apoptose , Caspase 3/metabolismo , Cisplatino/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Japão , Medicina Kampo
14.
Free Radic Biol Med ; 177: 404-418, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619327

RESUMO

Focal adhesion kinase (FAK) activation plays a crucial role in vascular diseases. In endothelial cells, FAK activation is involved in the activation of pro-inflammatory signaling and the progression of atherosclerosis. Disturbed flow (D-flow) induces endothelial activation and senescence, but the exact role of FAK in D-flow-induced endothelial activation and senescence remains unclear. The objective of this study is to investigate the role of FAK SUMOylation in D-flow-induced endothelial activation and senescence. The results showed that D-flow induced reactive oxygen species (ROS) production via NADPH oxidase activation and activated a redox-sensitive kinase p90RSK, leading to FAK activation by upregulating FAK K152 SUMOylation and the subsequent Vav2 phosphorylation, which in turn formed a positive feedback loop by upregulating ROS production. This feedback loop played a crucial role in regulating endothelial activation and senescence. D-flow-induced endothelial activation and senescence were significantly inhibited by mutating a FAK SUMOylation site lysine152 to arginine. Collectively, we concluded that FAK K152 SUMOylation plays a key role in D-flow-induced endothelial activation and senescence by forming a positive feedback loop through ROS production.


Assuntos
Células Endoteliais , Sumoilação , Células Endoteliais/metabolismo , Retroalimentação , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Inflamação , Fosforilação , Espécies Reativas de Oxigênio
15.
Redox Biol ; 47: 102132, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619528

RESUMO

The incidence of cardiovascular disease (CVD) is higher in cancer survivors than in the general population. Several cancer treatments are recognized as risk factors for CVD, but specific therapies are unavailable. Many cancer treatments activate shared signaling events, which reprogram myeloid cells (MCs) towards persistent senescence-associated secretory phenotype (SASP) and consequently CVD, but the exact mechanisms remain unclear. This study aimed to provide mechanistic insights and potential treatments by investigating how chemo-radiation can induce persistent SASP. We generated ERK5 S496A knock-in mice and determined SASP in myeloid cells (MCs) by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. Candidate SASP inducers were identified by high-throughput screening, using the ERK5 transcriptional activity reporter cell system. Various chemotherapy agents and ionizing radiation (IR) up-regulated p90RSK-mediated ERK5 S496 phosphorylation. Doxorubicin and IR caused metabolic changes with nicotinamide adenine dinucleotide depletion and ensuing mitochondrial stunning (reversible mitochondria dysfunction without showing any cell death under ATP depletion) via p90RSK-ERK5 modulation and poly (ADP-ribose) polymerase (PARP) activation, which formed a nucleus-mitochondria positive feedback loop. This feedback loop reprogramed MCs to induce a sustained SASP state, and ultimately primed MCs to be more sensitive to reactive oxygen species. This priming was also detected in circulating monocytes from cancer patients after IR. When PARP activity was transiently inhibited at the time of IR, mitochondrial stunning, priming, macrophage infiltration, and coronary atherosclerosis were all eradicated. The p90RSK-ERK5 module plays a crucial role in SASP-mediated mitochondrial stunning via regulating PARP activation. Our data show for the first time that the nucleus-mitochondria positive feedback loop formed by p90RSK-ERK5 S496 phosphorylation-mediated PARP activation plays a crucial role of persistent SASP state, and also provide preclinical evidence supporting that transient inhibition of PARP activation only at the time of radiation therapy can prevent future CVD in cancer survivors.


Assuntos
Doença da Artéria Coronariana , Proteína Quinase 7 Ativada por Mitógeno , Poli(ADP-Ribose) Polimerases , Difosfato de Adenosina/metabolismo , Animais , Doença da Artéria Coronariana/metabolismo , Retroalimentação , Humanos , Camundongos , Mitocôndrias/metabolismo , Fenótipo , Fosforilação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ribose/metabolismo
16.
Eur J Pharmacol ; 902: 174099, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910036

RESUMO

Despite the availability of more than 20 clinical antiepileptic drugs, approximately 30% of patients with epilepsy do not respond to antiepileptic drug treatment. Therefore, it is important to develop antiepileptic products that function via novel mechanisms. In the present study, we evaluated data from one of the largest global databases to identify drugs with antiepileptic effects, and subsequently attempted to understand the effect of the combination of antiepileptic drugs and valacyclovir in epileptic seizures using a kindling model. To induce kindling in mice, pentylenetetrazol at a dose of 40 mg/kg was administered once every 48 h. Valacyclovir was orally administered 30 min before antiepileptic drug injection in kindled mice, and behavioral seizures were monitored for 20 min following pentylenetetrazol administration. Additionally, c-Fos expression in the hippocampal dentate gyrus was measured in kindled mice. Valacyclovir showed inhibitory effects on pentylenetetrazol-induced kindled seizures. In addition, simultaneous use of levetiracetam and valacyclovir caused more potent inhibition of seizure activity, and neither valproic acid nor diazepam augmented the anti-seizure effect in kindled mice. Furthermore, kindled mice showed increased c-Fos levels in the dentate gyrus. The increase in c-Fos expression was significantly inhibited by the simultaneous use of levetiracetam and valacyclovir. The findings of the present study indicate that a combination of levetiracetam and valacyclovir had possible anticonvulsive effects on pentylenetetrazol-induced kindled epileptic seizures. These results suggest that valacyclovir may have an antiseizure effect in patients with epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Excitação Neurológica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Valaciclovir/farmacologia , Animais , Anticonvulsivantes/uso terapêutico , Cefepima/efeitos adversos , Bases de Dados Factuais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Quimioterapia Combinada , Hipocampo/efeitos dos fármacos , Humanos , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Convulsões/induzido quimicamente , Valaciclovir/uso terapêutico
18.
Kidney Int ; 99(4): 885-899, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307103

RESUMO

Cisplatin is widely used as an anti-tumor drug for the treatment of solid tumors. Unfortunately, it causes kidney toxicity as a critical side effect, limiting its use, given that no preventive drug against cisplatin-induced kidney toxicity is currently available. Here, based on a repositioning analysis of the Food and Drug Administration Adverse Events Reporting System, we found that a previously developed drug, diphenhydramine, may provide a novel treatment for cisplatin-induced kidney toxicity. To confirm this, the actual efficacy of diphenhydramine was evaluated in in vitro and in vivo experiments. Diphenhydramine inhibited cisplatin-induced cell death in kidney proximal tubular cells. Mice administered cisplatin developed kidney injury with significant dysfunction (mean plasma creatinine: 0.43 vs 0.15 mg/dl) and showed augmented oxidative stress, increased apoptosis, elevated inflammatory cytokines, and MAPKs activation. However, most of these symptoms were suppressed by treatment with diphenhydramine. Furthermore, the concentration of cisplatin in the kidney was significantly attenuated in diphenhydramine-treated mice (mean platinum content: 70.0 vs 53.4 µg/g dry kidney weight). Importantly, diphenhydramine did not influence or interfere with the anti-tumor effect of cisplatin in any of the in vitro or in vivo experiments. In a selected cohort of 98 1:1 matched patients from a retrospective database of 1467 patients showed that patients with malignant cancer who had used diphenhydramine before cisplatin treatment exhibited significantly less acute kidney injury compared to ones who did not (6.1 % vs 22.4 %, respectively). Thus, diphenhydramine demonstrated efficacy as a novel preventive medicine against cisplatin-induced kidney toxicity.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Antineoplásicos/toxicidade , Apoptose , Cisplatino/toxicidade , Difenidramina/metabolismo , Difenidramina/farmacologia , Difenidramina/uso terapêutico , Humanos , Rim/metabolismo , Camundongos , Estresse Oxidativo , Estudos Retrospectivos
19.
Front Cardiovasc Med ; 7: 542485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304925

RESUMO

Previously, we reported that post-translational modifications (PTMs) of MAGI1, including S741 phosphorylation and K931 de-SUMOylation, both of which are regulated by p90RSK activation, lead to endothelial cell (EC) activation. However, roles for p90RSK and MAGI1-PTMs in regulating EC permeability remain unclear despite MAGI1 being a junctional molecule. Here, we show that thrombin (Thb)-induced EC permeability, detected by the electric cell-substrate impedance sensing (ECIS) based system, was decreased by overexpression of dominant negative p90RSK or a MAGI1-S741A phosphorylation mutant, but was accelerated by overexpression of p90RSK, siRNA-mediated knockdown of magi1, or the MAGI1-K931R SUMOylation mutant. MAGI1 depletion also increased the mRNA and protein expression of the large tumor suppressor kinases 1 and 2 (LATS1/2), which inhibited YAP/TAZ activity and increased EC permeability. Because the endothelial barrier is a critical mediator of tumor hypoxia, we also evaluated the role of p90RSK activation in tumor vessel leakiness by using a relatively low dose of the p90RSK specific inhibitor, FMK-MEA. FMK-MEA significantly inhibited tumor vessel leakiness at a dose that does not affect morphology and growth of tumor vessels in vivo. These results provide novel insights into crucial roles for p90RSK-mediated MAGI1 PTMs and the Hippo pathway in EC permeability, as well as p90RSK activation in tumor vessel leakiness.

20.
Diabetologia ; 63(8): 1588-1602, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430665

RESUMO

AIMS/HYPOTHESIS: Iron accumulation affects obesity and diabetes, both of which are ameliorated by iron reduction. Ferritin, an iron-storage protein, plays a crucial role in iron metabolism. H-ferritin exerts its cytoprotective action by reducing toxicity via its ferroxidase activity. We investigated the role of macrophage H-ferritin in obesity and diabetes. METHODS: Conditional macrophage-specific H-ferritin (Fth, also known as Fth1) knockout (LysM-Cre Fth KO) mice were used and divided into four groups: wild-type (WT) and LysM-Cre Fth KO mice with normal diet (ND), and WT and LysM-Cre Fth KO mice with high-fat diet (HFD). These mice were analysed for characteristics of obesity and diabetes, tissue iron content, inflammation, oxidative stress, insulin sensitivity and metabolic measurements. RAW264.7 macrophage cells were used for in vitro experiments. RESULTS: Iron concentration reduced, and mRNA expression of ferroportin increased, in macrophages from LysM-Cre Fth KO mice. HFD-induced obesity was lower in LysM-Cre Fth KO mice than in WT mice at 12 weeks (body weight: KO 34.6 ± 5.6 g vs WT 40.1 ± 5.2 g). mRNA expression of inflammatory cytokines and infiltrated macrophages and oxidative stress increased in the adipose tissue of HFD-fed WT mice, but was not elevated in HFD-fed LysM-Cre Fth KO mice. However, WT mice fed an HFD had elevated iron concentration in adipose tissue and spleen, which was not observed in LysM-Cre Fth KO mice fed an HFD (adipose tissue [µmol Fe/g protein]: KO 1496 ± 479 vs WT 2316 ± 866; spleen [µmol Fe/g protein]: KO 218 ± 54 vs WT 334 ± 83). Moreover, HFD administration impaired both glucose tolerance and insulin sensitivity in WT mice, which was ameliorated in LysM-Cre Fth KO mice. In addition, energy expenditure, mRNA expression of thermogenic genes, and body temperature were higher in KO mice with HFD than WT mice with HFD. In vitro experiments showed that iron content was reduced, and lipopolysaccharide-induced Tnf-α (also known as Tnf) mRNA upregulation was inhibited in a macrophage cell line transfected with Fth siRNA. CONCLUSIONS/INTERPRETATION: Deletion of macrophage H-ferritin suppresses the inflammatory response by reducing intracellular iron levels, resulting in the prevention of HFD-induced obesity and diabetes. The findings from this study highlight macrophage iron levels as a potential therapeutic target for obesity and diabetes.


Assuntos
Apoferritinas/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Dieta Hiperlipídica/efeitos adversos , Macrófagos/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Animais , Apoferritinas/genética , Diabetes Mellitus/etiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA