Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 297(3): 101027, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339736

RESUMO

The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic ß-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the ß-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the ß-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.


Assuntos
Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Hidrólise , Conformação Proteica , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/isolamento & purificação , Homologia de Sequência de Aminoácidos
2.
J Biol Chem ; 287(46): 38695-704, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012354

RESUMO

The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30-40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α(3)ß(3)γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ε inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ε inhibition.


Assuntos
Cianobactérias/enzimologia , ATPases Translocadoras de Prótons/química , Complexos de ATP Sintetase/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Animais , Bovinos , Cloroplastos/metabolismo , Cianobactérias/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrólise , Cinética , Modelos Moleculares , Conformação Molecular , Mutação , Oxirredução , Conformação Proteica
3.
J Biol Chem ; 286(30): 26595-602, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21610078

RESUMO

The γ and ε subunits of F(0)F(1)-ATP synthase from photosynthetic organisms display unique properties not found in other organisms. Although the γ subunit of both chloroplast and cyanobacterial F(0)F(1) contains an extra amino acid segment whose deletion results in a high ATP hydrolysis activity (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865), its ε subunit strongly inhibits ATP hydrolysis activity. To understand the physiological significance of these phenomena, we studied mutant strains with (i) a C-terminally truncated ε (ε(ΔC)), (ii) γ lacking the inserted sequence (γ(Δ198-222)), and (iii) a double mutation of (i) and (ii) in Synechocystis sp. PCC 6803. Although thylakoid membranes from the ε(ΔC) strain showed higher ATP hydrolysis and lower ATP synthesis activities than those of the wild type, no significant difference was observed in growth rate and in intracellular ATP level both under light conditions and during light-dark cycles. However, both the ε(ΔC) and γ(Δ198-222) and the double mutant strains showed a lower intracellular ATP level and lower cell viability under prolonged dark incubation compared with the wild type. These data suggest that internal inhibition of ATP hydrolysis activity is very important for cyanobacteria that are exposed to prolonged dark adaptation and, in general, for the survival of photosynthetic organisms in an ever-changing environment.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Escuridão , Luz , ATPases Translocadoras de Prótons/metabolismo , Synechocystis/enzimologia , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , ATPases Translocadoras de Prótons/genética , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA