Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biofactors ; 50(2): 347-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37767998

RESUMO

Bone remodeling is a process that involves osteoblasts, osteoclasts, and osteocytes, and different intracellular signaling, such as the canonical Wnt/ß-catenin pathway. Dysregulations of this pathway may also occur during secondary osteoporosis, as in the case of glucocorticoid-induced osteoporosis (GIO), which accelerates osteoblast and osteocyte apoptosis by reducing bone formation, osteoblast differentiation and function, accelerates in turn osteoblast, and osteocyte apoptosis. Genistein is a soy-derived nutrient belonging to the class of isoflavones that reduces bone loss in osteopenic menopausal women, inhibiting bone resorption; however, genistein may also favor bone formation. The aim of this study was to investigate whether estrogen receptor stimulation by genistein might promote osteoblast and osteocyte function during glucocorticoid challenge. Primary osteoblasts, collected from C57BL6/J mice, and MLO-A5 osteocyte cell line were used to reproduce an in vitro model of GIO by adding dexamethasone (1 µM) for 24 h. Cells were then treated with genistein for 24 h and quantitative Polymerase Chain Reaction (qPCR) and western blot were performed to study whether genistein activated the Wnt/ß-catenin pathway. Dexamethasone challenge reduced bone formation in primary osteoblasts and bone mineralization in osteocytes; moreover, canonical Wnt/ß-catenin pathway was reduced following incubation with dexamethasone in both osteoblasts and osteocytes. Genistein reverted these changes and this effect was mediated by both estrogen receptors α and ß. These data suggest that genistein could induce bone remodeling through Wnt/ß-catenin pathway activation.


Assuntos
Genisteína , Isoflavonas , Osteoporose , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular , Dexametasona/farmacologia , Genisteína/farmacologia , Glucocorticoides , Isoflavonas/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Glycine max/química
2.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895166

RESUMO

Cadmium (Cd) is a transition heavy metal that is able to accumulate in the central nervous system and may induce cell death through reactive oxygen species (ROS)-mediated mechanisms and inactivating the antioxidant processes, becoming an important risk factor for neurodegenerative diseases. The antioxidant effects of cannabinoid receptor modulation have been extensively described, and, in particular, ß-Caryophyllene (BCP), a plant-derived cannabinoid 2 receptor (CB2R) agonist, not only showed significant antioxidant properties but also anti-inflammatory, analgesic, and neuroprotective effects. Therefore, the aim of the present study was to evaluate BCP effects in a model of Cd-induced toxicity in the neuroblastoma SH-SY5Y cell line used to reproduce Cd intoxication in humans. SH-SY5Y cells were pre-treated with BCP (25, 50, and 100 µM) for 24 h. The day after, cells were challenged with cadmium chloride (CdCl2; 10 µM) for 24 h to induce neuronal toxicity. CdCl2 increased ROS accumulation, and BCP treatment significantly reduced ROS production at concentrations of 50 and 100 µM. In addition, CdCl2 significantly decreased the protein level of nuclear factor erythroid 2-related factor 2 (Nrf2) compared to unstimulated cells; the treatment with BCP at a concentration of 50 µM markedly increased Nrf2 expression, thus confirming the BCP anti-oxidant effect. Moreover, BCP treatment preserved cells from death, regulated the apoptosis pathway, and showed a significant anti-inflammatory effect, thus reducing the pro-inflammatory cytokines increased by the CdCl2 challenge. The results indicated that BCP preserved neuronal damage induced by Cd and might represent a future candidate for protection in neurotoxic conditions.


Assuntos
Neuroblastoma , Sesquiterpenos , Humanos , Cádmio/toxicidade , Sesquiterpenos/farmacologia , Receptor CB2 de Canabinoide , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios não Esteroides , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445907

RESUMO

Neuroinflammation is an inflammatory response of the nervous tissue mediated by the production of cytokines, chemokines, and reactive oxygen species. Recent studies have shown that an upregulation of immunoproteasome is highly associated with various diseases and its inhibition attenuates neuroinflammation. In this context, the development of non-covalent immunoproteasome-selective inhibitors could represent a promising strategy for treating inflammatory diseases. Novel amide derivatives, KJ3 and KJ9, inhibit the ß5 subunit of immunoproteasome and were used to evaluate their possible anti-inflammatory effects in an in vitro model of TNF-α induced neuroinflammation. Differentiated SH-SY5Y and microglial cells were challenged with 10 ng/mL TNF-α for 24 h and treated with KJ3 (1 µM) and KJ9 (1 µM) for 24 h. The amide derivatives showed a significant reduction of oxidative stress and the inflammatory cascade triggered by TNF-α reducing p-ERK expression in treated cells. Moreover, the key action of these compounds on the immunoproteasome was further confirmed by halting the IkB-α phosphorylation and the consequent inhibition of NF-kB. As downstream targets, IL-1ß and IL-6 expression resulted also blunted by either KJ3 and KJ9. These preliminary results suggest that the effects of these two compounds during neuroinflammatory response relies on the reduced expression of pro-inflammatory targets.


Assuntos
Neuroblastoma , Doenças Neuroinflamatórias , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia
4.
Biomed Pharmacother ; 162: 114666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030134

RESUMO

Cardiac fibrosis is a pathological process characterized by an excessive deposition of extracellular matrix (ECM) and an increased production of fibrillar collagen in the cardiac interstitium, mainly caused by the activation of cardiac fibroblasts and their transition into myofibroblasts. Oxidative stress is deeply implicated in the pathogenesis of cardiac fibrosis both directly and via its involvement in the tumor growth factor ß1 (TGF-ß1) signaling. Ellagic acid (EA) and punicic acid (PA) are the main components of the Punica granatum L (pomegranate) fruit and seed oil respectively, whose antioxidant, anti-inflammatory and anti-fibrotic effects have been previously described. Therefore, the aim of this study was to investigate the effects of EA or PA or EA+PA in an in vitro model of cardiac fibrosis. Immortalized Human Cardiac Fibroblasts (IM-HCF) were stimulated with 10 ng/ml of TGF-ß1 for 24 h to induce a fibrotic damage. Cells were then treated with EA (1 µM), PA (1 µM) or EA+PA for additional 24 h. Both EA and PA reduced the pro-fibrotic proteins expressions and the intracellular reactive oxygen species (ROS) accumulation. The anti-oxidant activity was also observed by Nrf2 activation with the consequent TGF-ß1-Smad2/3-MMP2/9 and Wnt/ß-catenin signaling inhibition, thus reducing collagen production. EA and PA significantly inhibit NF-κB pathway and, consequently, TNF-α, IL-1ß and IL-6 levels: the greater effect was observed when EA and PA were used in combination. These results suggest that EA, PA and in particular EA+PA might be effective in reducing fibrosis through their antioxidant and anti-inflammatory properties by the modulation of different molecular pathways.


Assuntos
Antioxidantes , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose , Anti-Inflamatórios , Ácido Elágico
5.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675295

RESUMO

Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-ß activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-ß binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-ß-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-ß at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-ß stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-ß through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1ß gene expression was markedly decreased following A2AR antagonist treatment in TGF-ß-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling.


Assuntos
Fibroblastos , Proteínas Proto-Oncogênicas c-akt , Humanos , Biglicano/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Fibrose , Adenosina/farmacologia , Adenosina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas
6.
Pharmaceuticals (Basel) ; 14(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070359

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19). The outbreak of this coronavirus was first identified in Wuhan (Hubei, China) in December 2019, and it was declared as pandemic by the World Health Organization (WHO) in March 2020. Today, several vaccines against SARS-CoV-2 have been approved, and some neutralizing monoclonal antibodies are being tested as therapeutic approaches for COVID-19 but, one of the key questions is whether both vaccines and monoclonal antibodies could be effective against infections by new SARS-CoV-2 variants. Nevertheless, there are currently more than 1000 ongoing clinical trials focusing on the use and effectiveness of antiviral drugs as a possible therapeutic treatment. Among the classes of antiviral drugs are included 3CL protein inhibitors, RNA synthesis inhibitors and other small molecule drugs which target the ability of SARS-COV-2 to interact with host cells. Considering the need to find specific treatment to prevent the emergent outbreak, the aim of this review is to explain how some repurposed antiviral drugs, indicated for the treatment of other viral infections, could be potential candidates for the treatment of COVID-19.

7.
Curr Med Chem ; 28(11): 2195-2217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33138750

RESUMO

Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.


Assuntos
Doenças Hematológicas , Leucemia Mieloide Aguda , Mieloma Múltiplo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Reposicionamento de Medicamentos , Doenças Hematológicas/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA