Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 3981-3989, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38221888

RESUMO

The redox reactions of a pyrazine-bridged binuclear [(edta)RuIIIpzRuIII(edta)]2- (edta4- = ethylenediaminetetraacetate; pz = pyrazine) have been investigated spectrochemically and spectroelectrochemically for the first time. The kinetics of the reduction of [(edta)RuIIIpzRuIII(edta)]2- (RuIII-RuIII) with the ascorbic acid anion (HA-) was studied as a function of ascorbic concentration and temperature at a fixed pH 6.0. The overall reaction of RuIII-RuIII was found to consist of two-steps involving the initial formation of the mixed-valence [(edta)RuIIpzRuIII(edta)]3- (RuII-RuIII) intermediate complex (λmax = 462 nm, εmax = 10 000 M-1 cm-1), which undergoes further reduction by ascorbic acid to produce the [(edta)RuIIpzRuII(edta)]4-(RuII-RuII) ultimate product complex (λmax = 540 nm, εmax = 20 700 M-1 cm-1). Our studies further revealed that the RuII-RuIII and RuII-RuII species are formed in the electrochemical reduction of the RuIII-RuIII complex at 0.0 and -0.4 V (vs. SHE), respectively. Formation of RuII-RuIII and RuII-RuII was further corroborated by magnetic moment measurements and DFT calculations. Kinetic data and activation parameters are interpreted in terms of a mechanism involving rate-determining outer-sphere electron transfer between Ru(III) and the ascorbate monoanion (HA-) at pH 6.0. A detailed reaction mechanism in agreement with the spectral, spectro-electrochemical and kinetic data is presented. The results of the spectral and kinetic studies of the reaction of the RuII-RuII complex with molecular oxygen (O2) reveal the ability of the RuII-RuII species to effect the oxygen reduction reaction (ORR) leading to the formation of H2O2, a partial reduction product of dioxygen (O2).

2.
Chem Rec ; 23(12): e202300278, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821418

RESUMO

The presented Review is focused on the latest research in the field of inorganic chemistry performed by the van Eldik group and his collaborators. The first part of the manuscript concentrates on the interaction of nitric oxide and its derivatives with biologically important compounds. We summarized mechanistic information on the interaction between model porphyrin systems (microperoxidase) and NO as well as the recent studies on the formation of nitrosylcobalamin (CblNO). The following sections cover the characterization of the Ru(II)/Ru(III) mixed-valence ion-pair complexes, including Ru(II)/Ru(III)(edta) complexes. The last part concerns the latest mechanistic information on the DFT techniques applications. Each section presents the most important results with the mechanistic interpretations.

3.
Inorg Chem ; 59(12): 8609-8619, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32441928

RESUMO

In this contribution, we report the synthesis and full characterization of the first mixed-valence Ru(II)/Ru(III) ion-pair complex, [RuII(bipy)2(pic)]+[cis-RuIIICl2(pic)2]-, in the solid state and in aqueous solution, where bipy = 2,2'-bipyridine and pic- = picolinate. In addition, unexpected high-frequency electron paramagnetic resonance evidence for interactions between two neighboring Ru(III) ions, resulting in a triplet state, S = 1, was found.

4.
Dalton Trans ; 49(15): 4599-4659, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32162632

RESUMO

This review covers highlights of the work performed in the van Eldik group on inorganic reaction mechanisms over the past two decades in the form of a personal journey. Topics that are covered include, from NO to HNO chemistry, peroxide activation in model porphyrin and enzymatic systems, the wonder-world of RuIII(edta) chemistry, redox chemistry of Ru(iii) complexes, Ru(ii) polypyridyl complexes and their application, relevant physicochemical properties and reaction mechanisms in ionic liquids, and mechanistic insight from computational chemistry. In each of these sections, typical examples of mechanistic studies are presented in reference to related work reported in the literature.

5.
Dalton Trans ; 46(31): 10264-10280, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28737821

RESUMO

The crystal structures of [RuII(terpy)(bipy)Cl]Cl·2H2O and [RuII(terpy)(en)Cl]Cl·3H2O, where terpy = 2,2':6',2''-terpyridine, bipy = 2,2'-bipyridine and en = ethylenediamine, were determined and compared to the structure of the complexes in solution obtained by multi-nuclear NMR spectroscopy in DMSOd-6 as a solvent. In aqueous solution, both chlorido complexes aquate fully to the corresponding aqua complexes, viz. [RuII(terpy)(bipy)(H2O)]2+ and [RuII(terpy)(en)(H2O)]2+, within ca. 2 h and ca. 2 min at 37 °C, respectively. The spontaneous aquation reactions can only be suppressed by chloride concentrations as high as 2 to 4 M, i.e. concentrations much higher than that found in human blood. The corresponding aqua complexes are characterized by pKa values of ca. 10 and 11, respectively, which suggest a more labile coordinated water molecule in the case of the [RuII(terpy)(en)(H2O)]2+ complex. Substitution reactions of the aqua complexes with chloride, cyanide and thiourea show that the [RuII(terpy)(en)(H2O)]2+ complex is 30-60 times more labile than the [RuII(terpy)(bipy)(H2O)]2+ complex at 25 °C. Water exchange reactions for both complexes were studied by 17O-NMR and DFT calculations (B3LYP(CPCM)/def2tzvp//B3LYP/def2svp and ωB97XD(CPCM)/def2tzvp//B3LYP/def2svp). Thermal and pressure activation parameters for the water exchange and ligand substitution reactions support the operation of an associative interchange (Ia) process. The difference in reactivity between these complexes can be accounted for in terms of π-back bonding effects of the terpy and bipy ligands and steric hindrance on the bipy complex. Consequences for eventual biological application of the chlorido complexes are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA