Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Med Sci ; 8(4): 1787-1801, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537080

RESUMO

Bats are the natural reservoir host for many pathogenic and non-pathogenic viruses, potentially spilling over to humans and domestic animals directly or via an intermediate host. The ongoing COVID-19 pandemic is the continuation of virus spillover events that have taken place over the last few decades, particularly in Asia and Africa. Therefore, these bat-associated epidemics provide a significant number of hints, including respiratory cellular tropism, more intense susceptibility to these cell types, and overall likely to become a pandemic for the next spillover. In this systematic review, we analysed data to insight, through bat-originated spillover in Asia and Africa. We used STATA/IC-13 software for descriptive statistics and meta-analysis. The random effect of meta-analysis showed that the pooled estimates of case fatality rates of bat-originated viral zoonotic diseases were higher in Africa (61.06%, 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001). Moreover, estimates of case fatality rates were higher in Ebola (61.06%; 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001) followed by Nipah (55.19%; 95%CI: 39.29 to 71.09, l2 % = 94.2, p < 0.001), MERS (18.49%; 95%CI: 8.19 to 28.76, l2 % = 95.4, p < 0.001) and SARS (10.86%; 95%CI: 6.02 to 15.71, l2 % = 85.7, p < 0.001) with the overall case fatality rates of 29.86 (95%CI: 29.97 to 48.58, l2 % = 99.0, p < 0.001). Bat-originated viruses have caused several outbreaks of deadly diseases, including Nipah, Ebola, SARS and MERS in Asia and Africa in a sequential fashion. Nipah virus emerged first in Malaysia, but later, periodic outbreaks were noticed in Bangladesh and India. Similarly, the Ebola virus was detected in the African continent with neurological disorders in humans, like Nipah, seen in the Asian region. Two important coronaviruses, MERS and SARS, were introduced, both with the potential to infect respiratory passages. This paper explores the dimension of spillover events within and/or between bat-human and the epidemiological risk factors, which may lead to another pandemic occurring. Further, these processes enhance the bat-originated virus, which utilises an intermediate host to jump into human species.


Assuntos
COVID-19 , Quirópteros , Doença pelo Vírus Ebola , Vírus , África/epidemiologia , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/veterinária , Humanos , Pandemias
2.
BMC Pharmacol Toxicol ; 23(1): 28, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484604

RESUMO

BACKGROUND: The use of chemical pesticides in developing countries like Bangladesh and their impacts on human health and food security is a global concern. Bangladesh is an agricultural dependent country for the growing population demand for food security and food safety. We conduct this study to assess public health threats of commonly utilised pesticides including malathion and nitrobenzene in female rabbit model. METHODS: Thirty New Zealand White healthy rabbit was divided randomly into three groups; and subjected to distilled water as control, malathion@ 5 mg/kg body weight and nitrobenzene@ 5 mg/kg body i.p daily for the next 15 days. Hematology, serum biochemistry and hormonal assay were performed. RESULTS: Red blood cell (RBC) concentrations (TEC, Hb, PCV%) were reduced in rabbits exposed to malathion and nitrobenzene. The neutrophil and eosinophil percentage were increased in the malathion and nitrobenzene exposed juvenile rabbit group. We found that serum aspartate aminotransferase (AST) and creatinine were increased in the nitrobenzene exposed group in infants, whereas malathion exposure increased serum alanine aminotransferase (ALT). In contrast, the juvenile group exposed to malathion increased the ALT level. There was no change in AST or creatinine levels in juvenile rabbits exposed to malathion or nitrobenzene. Serum estradiol levels were significantly lower in rabbits exposed to malathion and nitrobenzene. Serum testosterone concentration was increased in juvenile rabbits exposed to malathion and nitrobenzene, but progesterone was decreased in malathion exposed juvenile rabbits. CONCLUSION: However, this study highlights the importance of rigorous monitoring and testing of agricultural products. In addition, strengthen research and extension in the fields of agro economy, organic farming, local universities and farmer associations.


Assuntos
Praguicidas , Animais , Feminino , Humanos , Coelhos , Bangladesh , Creatinina , Malation , Nitrobenzenos , Praguicidas/toxicidade
3.
BMC Vet Res ; 16(1): 302, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838793

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS: Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS: Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Cadeia Alimentar , Salmonella/genética , Animais , Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Bangladesh , Escherichia coli/efeitos dos fármacos , Humanos , Saúde Única , Salmonella/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA