RESUMO
BACKGROUND: Circulatory shock and multi-organ failure remain major contributors to morbidity and mortality in critically ill patients and are associated with insufficient oxygen availability in the tissue. Intrinsic mechanisms to improve tissue perfusion, such as up-regulation of functional capillary density (FCD) and red blood cell velocity (RBCv), have been identified as maneuvers to improve oxygen extraction by the tissues; however, their role in circulatory shock and potential use as resuscitation targets remains unknown. To fill this gap, we examined the baseline and maximum recruitable FCD and RBCv in response to a topical nitroglycerin stimulus (FCDNG, RBCvNG) in patients with and without circulatory shock to test whether this may be a method to identify the presence and magnitude of a microcirculatory reserve capacity important for identifying a resuscitation target. METHODS: Sublingual handheld vital microscopy was performed after initial resuscitation in mechanically ventilated patients consecutively admitted to a tertiary medical ICU. FCD and RBCv were quantified using an automated computer vision algorithm (MicroTools). Patients with circulatory shock were retrospectively identified via standardized hemodynamic and clinical criteria and compared to patients without circulatory shock. RESULTS: 54 patients (57 ± 14y, BMI 26.3 ± 4.9 kg/m2, SAPS 56 ± 19, 65% male) were included, 13 of whom presented with circulatory shock. Both groups had similar cardiac index, mean arterial pressure, RBCv, and RBCvNG. Heart rate (p < 0.001), central venous pressure (p = 0.02), lactate (p < 0.001), capillary refill time (p < 0.01), and Mottling score (p < 0.001) were higher in circulatory shock after initial resuscitation, while FCD and FCDNG were 10% lower (16.9 ± 4.2 and 18.9 ± 3.2, p < 0.01; 19.3 ± 3.1 and 21.3 ± 2.9, p = 0.03). Nitroglycerin response was similar in both groups, and circulatory shock patients reached FCDNG similar to baseline FCD found in patients without shock. CONCLUSION: Critically ill patients suffering from circulatory shock were found to present with a lower sublingual FCD. The preserved nitroglycerin response suggests a dysfunction of intrinsic regulation mechanisms to increase the microcirculatory oxygen extraction capacity associated with circulatory shock and identifies a potential resuscitation target. These differences in microcirculatory hemodynamic function between patients with and without circulatory shock were not reflected in blood pressure or cardiac index.
RESUMO
BACKGROUND: Circulatory shock, defined as decreased tissue perfusion, leading to inadequate oxygen delivery to meet cellular metabolic demands, remains a common condition with high morbidity and mortality. Rapid restitution and restoration of adequate tissue perfusion are the main treatment goals. To achieve this, current hemodynamic strategies focus on adjusting global physiological variables such as cardiac output (CO), hemoglobin (Hb) concentration, and arterial hemoglobin oxygen saturation (SaO2). However, it remains a challenge to identify optimal targets for these global variables that best support microcirculatory function. Weighting up the risks and benefits is especially difficult for choosing the amount of oxygen supplementation in critically ill patients. This review assesses the physiological basis for oxygen delivery to the tissue and provides an overview of the relevant literature to emphasize the importance of considering risks and benefits and support decision making at the bedside. PHYSIOLOGICAL PREMISES: Oxygen must reach the tissue to enable oxidative phosphorylation. The human body timely detects hypoxia via different mechanisms aiming to maintain adequate tissue oxygenation. In contrast to the pulmonary circulation, where the main response to hypoxia is arteriolar vasoconstriction, the regulatory mechanisms of the systemic circulation aim to optimize oxygen availability in the tissues. This is achieved by increasing the capillary density in the microcirculation and the capillary hematocrit thereby increasing the capacity of oxygen diffusion from the red blood cells to the tissue. Hyperoxia, on the other hand, is associated with oxygen radical production, promoting cell death. CURRENT STATE OF RESEARCH: Clinical trials in critically ill patients have primarily focused on comparing macrocirculatory endpoints and outcomes based on stroke volume and oxygenation targets. Some earlier studies have indicated potential benefits of conservative oxygenation. Recent trials show contradictory results regarding mortality, organ dysfunction, and ventilatory-free days. Empirical studies comparing various targets for SaO2, or partial pressure of oxygen indicate a U-shaped curve balancing positive and negative effects of oxygen supplementation. CONCLUSION AND FUTURE DIRECTIONS: To optimize risk-benefit ratio of resuscitation measures in critically ill patients with circulatory shock in addition to individual targets for CO and Hb concentration, a primary aim should be to restore tissue perfusion and avoid hyperoxia. In the future, an individualized approach with microcirculatory targets will become increasingly relevant. Further studies are needed to define optimal targets.
RESUMO
Measuring blood pressure (BP) and investigating arterial hemodynamics are essential in understanding cardiovascular disease and assessing cardiovascular risk. Several methods are used to measure BP in the doctor's office, at home, or over 24âh under ambulatory conditions. Similarly, several noninvasive methods have been introduced for assessing arterial structure and function; these methods differ for the large arteries, the small ones, and the capillaries. Consequently, when studying arterial hemodynamics, the clinician is faced with a multitude of assessment methods whose technical details, advantages, and limitations are sometimes unclear. Moreover, the conditions and procedures for their optimal implementation, and/or the reference normality values for the parameters they yield are not always taken into sufficient consideration. Therefore, a practice guideline summarizing the main methods and their use in clinical practice is needed. This expert group position paper was developed by an international group of scientists after a two-day meeting during which each of the most used methods and techniques for blood pressure measurement and arterial function and structure evaluation were presented and discussed, focusing on their advantages, limitations, indications, normal values, and their pragmatic clinical application.
Assuntos
Artérias , Determinação da Pressão Arterial , Pressão Sanguínea , Humanos , Determinação da Pressão Arterial/métodos , Artérias/fisiologia , Pressão Sanguínea/fisiologia , Hemodinâmica/fisiologiaAssuntos
Angiotensina II , Modelos Animais de Doenças , Hemodinâmica , Rim , Microcirculação , Sepse , Animais , Microcirculação/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/fisiopatologia , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Ratos , Masculino , Ratos Wistar , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologiaRESUMO
The objective of this study was to investigate the relationship between sublingual microcirculatory parameters and the severity of the disease in critically ill coronavirus disease 2019 (COVID-19) patients in the initial period of Intensive Care Unit (ICU) admission in a phase of the COVID-19 pandemic where patients were being treated with anti-inflammatory medication. In total, 35 critically ill COVID-19 patients were included. Twenty-one critically ill COVID-19 patients with a Sequential Organ Failure Assessment (SOFA) score below or equal to 7 were compared to 14 critically ill COVID-19 patients with a SOFA score exceeding 7. All patients received dexamethasone and tocilizumab at ICU admission. Microcirculatory measurements were performed within the first five days of ICU admission, preferably as soon as possible after admission. An increase in diffusive capacity of the microcirculation (total vessel density, functional capillary density, capillary hematocrit) and increased perfusion of the tissues by red blood cells was found in the critically ill COVID-19 patients with a SOFA score of 7-9 compared to the critically ill COVID-19 patients with a SOFA score ≤ 7. No such effects were found in the convective component of the microcirculation. These effects occurred in the presence of administration of anti-inflammatory medication.
Assuntos
COVID-19 , Humanos , Microcirculação , Estado Terminal , Pandemias , Unidades de Terapia Intensiva , Escores de Disfunção Orgânica , Anti-Inflamatórios , Estudos RetrospectivosRESUMO
A dysregulated host response is a common feature in critically ill patients due to both infectious and non-infectious origins that can lead to life-threatening organ dysfunction, which is still the primary cause of death in intensive care units worldwide. In its course, pathologic, unregulated levels of inflammatory mediators are often released into the circulation, a phenomenon also referred to as a "cytokine storm". To date, there are no approved therapies to modulate the excessive immune response and limit hyperinflammation with the goal of preventing related organ failure and death. In this context, extracorporeal blood purification therapies aiming at the alteration of the host inflammatory response through broad-spectrum, non-selective removal of inflammatory mediators have come into focus. A novel hemoadsorption device (CytoSorb®, CytoSorbents Inc., Princeton, NJ, USA) has shown promising results in patients with hyperinflammation from various origins. Although a significant body of literature exists, there is ongoing research to address many important remaining questions, including the optimal selection of patient groups who might benefit the most, optimal timing for therapy initiation, optimal schedule for adsorber exchanges and therapy duration, as well as an investigation into the potential removal of concomitant antibiotics and other medications. In this review, we discuss the existing evidence and provide a consensus-based best practice guidance for CytoSorb® hemoadsorption therapy in patients with vasoplegic shock.
RESUMO
OBJECTIVE: To develop a color code and to investigate the validity of Laser Speckle Contrast Imaging (LSCI) for measuring burn wound healing potential (HP) in burn patients as compared to the reference standard Laser Doppler Imaging (LDI). METHOD: A prospective, observational, cohort study was conducted in adult patients with acute burn wounds. The relationship between mean flux measured with LDI and mean perfusion units (PU) measured with LSCI was expressed in a regression formula. Measurements were performed between 2 and 5 days after the burn wound. The creation of a LSCI color code was done by mapping the clinically validated color code of the LDI to the corresponding values on the LSCI scale. To assess validity of the LSCI, the ability of the LSCI to discriminate between HP < 14 and ≥ 14 days and HP < 21 and original ≥ 21 days according to the LDI reference standard was evaluated, with calculation of receiver operating characteristics (ROC) curves. RESULTS: A total of 50 patients were included with a median age of 40 years and total body surface area burned of 6%. LSCI values of 143 PU and 113 PU were derived as the cut-off values for the need of conservative treatment (HP < 14 and ≥ 14 days) resp. surgical closure (HP < 21 and ≥ 21 days). These LSCI cut off values showed a good discrimination between HP 14 days versus ≥ 14 days (Area Under Curve (AUC)= 0.89; sensitivity 85% and specificity = 82%) and a good discrimination between HP 21 days versus ≥ 21 days (AUC of 0.89, sensitivity 81% and specificity 88%). CONCLUSION: This is the first study in which a color code for the LSCI in adult clinical burn patients has been developed. Our study reconfirms the good performance of the LSCI for prediction of burn wound healing potential. This provides additional evidence for the potential value of the LSCI in specialized burn care.
Assuntos
Queimaduras , Pele , Adulto , Humanos , Queimaduras/diagnóstico por imagem , Queimaduras/terapia , Estudos de Coortes , Imagem de Contraste de Manchas a Laser , Fluxometria por Laser-Doppler/métodos , Lasers , Estudos Prospectivos , Pele/diagnóstico por imagemRESUMO
In this prospective observational study, we investigated whether congenital heart disease (CHD) affects the microcirculation and whether the microcirculation is altered following cardiac surgery with cardiopulmonary bypass (CPB). Thirty-eight children with CHD undergoing cardiac surgery with CPB and 35 children undergoing elective, non-cardiac surgery were included. Repeated non-invasive sublingual microcirculatory measurements were performed with handheld vital microscopy. Before surgery, children with CHD showed similar perfused vessel densities and red blood cell velocities (RBCv) but less perfused vessels (p < 0.001), lower perfusion quality (p < 0.001), and higher small vessel densities (p = 0.039) than children without CHD. After cardiac surgery, perfused vessel densities and perfusion quality of small vessels declined (p = 0.025 and p = 0.032), while RBCv increased (p = 0.032). We demonstrated that CHD was associated with decreased microcirculatory perfusion and increased capillary recruitment. The microcirculation was further impaired after cardiac surgery. Decreased microcirculatory perfusion could be a warning sign for altered tissue oxygenation and requires further exploration.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiopatias Congênitas , Criança , Humanos , Microcirculação , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Ponte Cardiopulmonar/efeitos adversos , Estudos ProspectivosRESUMO
BACKGROUND: Vaginal laser therapy for the treatment of genitourinary syndrome of menopause (GSM) has been introduced to the market with limited (pre)clinical and experimental evidence supporting its efficacy. It is suggested that vaginal laser therapy increases epithelial thickness and improves vascularization, but the underlying biological working mechanism has not been substantiated yet. OBJECTIVE: To evaluate the effects of CO2 laser therapy on vaginal atrophy using noninvasive incident dark field (IDF) imaging in a large animal model for GSM. DESIGN, SETTING, AND PARTICIPANTS: An animal study was conducted between 2018 and 2019 and included 25 Dohne Merino ewes, of which 20 underwent bilateral ovariectomy (OVX) to induce iatrogenic menopause, and 5 did not. The total study duration was 10 months. INTERVENTIONS: Five months after OVX, ovariectomized ewes received monthly applications of CO2 laser (n = 7), vaginal estrogen (n = 7), or no treatment (n = 6) for 3 months. IDF imaging was performed monthly in all animals. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary outcome was the proportion of image sequences containing capillary loops (angioarchitecture). Secondary outcomes included focal depth (epithelial thickness), and quantitative measures of vessel density and perfusion. Treatment effects were evaluated using ANCOVA and binary logistic regression. RESULTS AND LIMITATIONS: Compared to OVX-only, ewes treated with estrogen demonstrated a higher capillary loops proportion (4% vs. 75%, p < 0.01), and higher focal depth (60 (IQR 60-80) vs. 80 (IQR 80-80) p < 0.05). CO2 laser therapy did not change microcirculatory parameters. As the ewes' vaginal epithelium is thinner than that of humans, it may demand different laser settings. CONCLUSIONS: In a large animal model for GSM, CO2 laser therapy does not affect microcirculatory outcomes related to GSM, whereas vaginal estrogen treatment does. Until more homogeneous and objective evidence about its efficacy is available, CO2 laser therapy should not be adopted into widespread practice for treating GSM.
Assuntos
Doenças Urogenitais Femininas , Terapia a Laser , Feminino , Animais , Ovinos , Humanos , Dióxido de Carbono , Microcirculação , Terapia a Laser/métodos , Doenças Urogenitais Femininas/terapia , Menopausa , Vagina , Síndrome , Modelos AnimaisRESUMO
Cardiogenic shock is usually defined as primary cardiac dysfunction with low cardiac output leading to critical organ hypoperfusion, and tissue hypoxia, resulting in high mortality rate between 40% and 50% despite recent advances. Many studies have now evidenced that cardiogenic shock not only involves systemic macrocirculation, such as blood pressure, left ventricular ejection fraction, or cardiac output, but also involves significant systemic microcirculatory abnormalities which seem strongly associated with the outcome. Although microcirculation has been widely studied in the context of septic shock showing heterogeneous alterations with clear evidence of macro and microcirculation uncoupling, there is now a growing body of literature focusing on cardiogenic shock states. Even if there is currently no consensus regarding the treatment of microcirculatory disturbances in cardiogenic shock, some treatments seem to show a benefit. Furthermore, a better understanding of the underlying pathophysiology may provide hypotheses for future studies aiming to improve cardiogenic shock prognosis.
RESUMO
BACKGROUND: Perioperative acute kidney injury (AKI) caused by ischemia-reperfusion (IR) is a significant contributor to mortality and morbidity after major surgery. Furosemide is commonly used in postoperative patients to promote diuresis and reduce tissue edema. However, the effects of furosemide on renal microcirculation, oxygenation and function are poorly understood during perioperative period following ischemic insult. Herein, we investigated the effects of furosemide in rats subjected IR insult. METHODS: 24 Wistar albino rats were divided into 4 groups, with 6 in each; Sham-operated Control (C), Control + Furosemide (C + F), ischemia/reperfusion (IR), and IR + F. After induction of anesthesia (BL), supra-aortic occlusion was applied to IR and IR + F groups for 45 min followed by ongoing reperfusion for 15 min (T1) and 2 h (T2). Furosemide infusion was initiated simultaneously in the intervention groups after ischemia. Renal blood flow (RBF), vascular resistance (RVR), oxygen delivery (DO2ren) and consumption (VO2ren), sodium reabsorption (TNa+), oxygen utilization efficiency (VO2/TNa+), cortical (CµO2) and medullary (MµO2) microvascular oxygen pressures, urine output (UO) and creatinine clearance (Ccr) were measured. Biomarkers of inflammation, oxidative and nitrosative stress were measured and kidneys were harvested for histological analysis. RESULTS: IR significantly decreased RBF, mainly by increasing RVR, which was exacerbated in the IR + F group at T2 (2198 ± 879 vs 4233 ± 2636 dyne/s/cm5, p = 0.07). CµO2 (61.6 ± 6.8 vs 86 ± 6.6 mmHg) and MµO2 (51.1 ± 4.1 vs 68.7 ± 4.9 mmHg, p < 0.05) were both reduced after IR and did not improve by furosemide. Moreover, VO2/TNa+ increased in the IR + F group at T2 with respect to the IR group (IR: 3.3 ± 2 vs IR + F: 8.2 ± 10 p = 0.07) suggesting a possible deterioration of oxygen utilization. Ccr did not change, but plasma creatinine increased significantly in IR + F groups. Histopathology revealed widespread damage both in the cortex and medulla in IR, IR + F and C + F groups. CONCLUSION: Renal microvascular oxygenation, renal function, renal vascular resistance, oxygen utilization and damage were not improved by furosemide administration after IR insult. Our study suggests that furosemide may cause additional structural and functional impairment to the kidney following ischemic injury and should be used with caution.
RESUMO
Circulatory shock is the inadequacy to supply mitochondria with enough oxygen to sustain aerobic energy metabolism. A novel noninvasive bedside measurement was recently introduced to monitor the mitochondrial oxygen tension in the skin (mitoPo2). As the most downstream marker of oxygen balance in the skin, mitoPo2 may provide additional information to improve shock management. However, a physiological basis for the interpretation of mitoPo2 values has not been established yet. In this paper, we developed a mathematical model of skin mitoPo2 using a network of parallel microvessels, based on Krogh's cylinder model. The model contains skin blood flow velocity, heterogeneity of blood flow, hematocrit, arteriolar oxygen saturation, and mitochondrial oxygen consumption as major variables. The major results of the model show that normal physiological mitoPo2 is in the range of 40-60 mmHg. The relationship of mitoPo2 with skin blood flow velocity follows a logarithmic growth curve, reaching a plateau at high skin blood flow velocity, suggesting that oxygen balance remains stable while peripheral perfusion declines. The model shows that a critical range exists where mitoPo2 rapidly deteriorates if skin perfusion further decreases. The model intuitively shows how tissue hypoxia could occur in the setting of septic shock, due to the profound impact of microcirculatory disturbance on mitoPo2, even at sustained cardiac output. MitoPo2 is the result of a complex interaction between all factors of oxygen delivery and microcirculation. This mathematical framework can be used to interpret mitoPo2 values in shock, with the potential to enhance personalized clinical trial design.NEW & NOTEWORTHY This is the first paper to simulate mitochondrial oxygen tension in skin in circulatory shock. The relationships of mitoPo2 with parameters of (microcirculatory) oxygen delivery aid in the understanding of noninvasive bedside measurement of mitoPo2 values and show that mitochondrial oxygen tension is two orders of magnitude higher than classically assumed. The model can be used to enhance clinical trial design investigating mitoPo2 as a resuscitation target in circulatory shock.
Assuntos
Mitocôndrias , Choque , Humanos , Microcirculação/fisiologia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Hipóxia/metabolismo , Consumo de Oxigênio , Choque/metabolismoRESUMO
Acute kidney injury (AKI) is frequently seen in patients with hemorrhagic shock due to hypotension, tissue hypoxia, and inflammation despite adequate resuscitation. There is a lack of information concerning the alteration of renal microcirculation and perfusion during shock and resuscitation. The aim of this study was to investigate the possible role of renal microcirculatory alterations on development of renal dysfunction in a pig model of non-traumatic hemorrhagic shock (HS) induced AKI.Fully instrumented female pigs were divided into the two groups as Control (n = 6) and HS (n = 11). HS was achieved by withdrawing blood until mean arterial pressure (MAP) reached around 50 mmHg. After an hour cessation period, fluid resuscitation with balanced crystalloid was started for the duration of 1 h. The systemic and renal hemodynamics, renal microcirculatory perfusion (contrast-enhanced ultrasound (CEUS)) and the sublingual microcirculation were measured.CEUS peak enhancement was significantly increased in HS during shock, early-, and late resuscitation indicating perfusion defects in the renal cortex (p < 0.05 vs. baseline, BL) despite a stable renal blood flow (RBF) and urine output. Following normalization of systemic hemodynamics, we observed persistent hypoxia (high lactate) and high red blood cell (RBC) velocity just after initiation of resuscitation resulting in further endothelial and renal damage as shown by increased plasma sialic acid (p < 0.05 vs. BL) and NGAL levels. We also showed that total vessel density (TVD) and functional capillary density (FCD) were depleted during resuscitation (p < 0.05).In this study, we showed that the correction of systemic hemodynamic variables may not be accompanied with the improvement of renal cortical perfusion, intra-renal blood volume and renal damage following fluid resuscitation. We suggest that the measurement of renal injury biomarkers, systemic and renal microcirculation can be used for guiding to the optimization of fluid therapies.
Assuntos
Injúria Renal Aguda , Choque Hemorrágico , Humanos , Feminino , Animais , Suínos , Choque Hemorrágico/terapia , Microcirculação , Rim , Hidratação/métodos , Hipóxia , Ressuscitação/métodos , HemodinâmicaRESUMO
OBJECTIVE: Laser-based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values. METHODS: Fifteen healthy volunteers (53% female, median age 29 [IQR 22-40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis. RESULTS: Baseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline. DISCUSSION: LSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Assuntos
Imagem de Contraste de Manchas a Laser , Imagem de Perfusão , Animais , Humanos , Feminino , Adulto , Masculino , Velocidade do Fluxo Sanguíneo , Perfusão , Microcirculação , Imagem de Perfusão/métodos , Lasers , Fluxo Sanguíneo Regional , Fluxometria por Laser-Doppler/métodos , Pele/irrigação sanguíneaRESUMO
The landmark 2016 Minimal Invasive Extracorporeal Technologies International Society (MiECTiS) position paper promoted the creation of a common language between cardiac surgeons, anesthesiologists and perfusionists which led to the development of a stable framework that paved the way for the advancement of minimal invasive perfusion and related technologies. The current expert consensus document offers an update in areas for which new evidence has emerged. In the light of published literature, modular minimal invasive extracorporeal circulation (MiECC) has been established as a safe and effective perfusion technique that increases biocompatibility and ultimately ensures perfusion safety in all adult cardiac surgical procedures, including re-operations, aortic arch and emergency surgery. Moreover, it was recognized that incorporation of MiECC strategies advances minimal invasive cardiac surgery (MICS) by combining reduced surgical trauma with minimal physiologic derangements. Minimal Invasive Extracorporeal Technologies International Society considers MiECC as a physiologically-based multidisciplinary strategy for performing cardiac surgery that is associated with significant evidence-based clinical benefit that has accrued over the years. Widespread adoption of this technology is thus strongly advocated to obtain additional healthcare benefit while advancing patient care.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Adulto , Humanos , Procedimentos Cirúrgicos Cardíacos/métodos , Circulação Extracorpórea/métodos , Perfusão , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , CoraçãoRESUMO
Green light with a wavelength of 520 nm is commonly used in sidestream dark field (SDF) video microscopes for sublingual microcirculation assessment in clinical practice. However, blue light could obtain a clearer microcirculatory image due to a higher light absorption coefficient of hemoglobin. The aim of this study was to compare the sublingual microcirculatory image quality acquisition and related microcirculatory parameters between 520 nm green light and 415 nm blue light probes in the SDF device named MicroSee V100. Sublingual microcirculation films from twenty-one healthy volunteers were prospectively collected by blue light and green light probes, and only one video of each wavelength was recorded and analyzed in each volunteer. Moreover, 200 sublingual microcirculation films (100 by blue light probe and 100 by green light probe) of ICU patients were retrospectively scored for microcirculation image quality. Compared to green light, an increase in the perfused vessel density (paired t test, increased by 4.6 ± 4.7 mm/mm2, P < 0.0001) and total vessel density (paired t test, increased by 5.1 ± 4.6 mm/mm2, P < 0.0001) was observed by blue light in the healthy volunteers. The blue light probe had a significantly lower rate of unacceptable films than the green light probe in the 200 films of ICU patients (10/100 vs. 39/100, P < 0.0001). Blue light provides a higher microcirculatory vessel density and image quality than the existing SDF probe using green light.
Assuntos
Soalho Bucal , Humanos , Microcirculação , Estudos Retrospectivos , Microscopia de Vídeo/métodosRESUMO
The sublingual mucosa is a commonly used intraoral location for identifying microcirculatory alterations using handheld vital microscopes (HVMs). The anatomic description of the sublingual cave and its related training have not been adequately introduced. The aim of this study was to introduce anatomy guided sublingual microcirculatory assessment. Measurements were acquired from the floor of the mouth using incident dark-field (IDF) imaging before (T0) and after (T1) sublingual cave anatomy instructed training. Instructions consists of examining a specific region of interested identified through observable anatomical structures adjacent and bilaterally to the lingual frenulum which is next to the sublingual papilla. The anatomical location called the sublingual triangle, was identified as stationed between the lingual frenulum, the sublingual fold and ventrally to the tongue. Small, large, and total vessel density datasets (SVD, LVD and TVD respectively) obtained by non-instructed and instructed measurements (NIN (T0) and IM (T1) respectively) were compared. Microvascular structures were analyzed, and the presence of salivary duct-related microcirculation was identified. A total of 72 video clips were used for analysis in which TVD, but not LVD and SVD, was higher in IM compared to NIM (NIM vs. IM, 25 ± 2 vs. 27 ± 3 mm/mm2 (p = 0.044), LVD NIM vs. IM: 7 ± 1 vs. 8 ± 1mm/mm2 (p = 0.092), SVD NIM vs. IM: 18 ± 2 vs. 20 ± 3 mm/mm2 (p = 0.103)). IM resulted in microcirculatory assessments which included morphological properties such as capillaries, venules and arterioles, without salivary duct-associated microcirculation. The sublingual triangle identified in this study showed consistent network-based microcirculation, without interference from microcirculation associated with specialized anatomic structures. These findings suggest that the sublingual triangle, an anatomy guided location, yielded sublingual based measurements that conforms with international guidelines. IM showed higher TVD values, and future studies are needed with larger sample sizes to prove differences in microcirculatory parameters.
Assuntos
Soalho Bucal , Língua , Humanos , Microcirculação , Soalho Bucal/irrigação sanguínea , Língua/irrigação sanguínea , CapilaresRESUMO
INTRODUCTION: Although the improving effect of nitric oxide (NO) donors has experimentally been demonstrated in shock, there are still no NO donor medications clinically available. Thiol-nitrosothiol-hydroxyethyl starch (S-NO-HES) is a novel molecule consisting of NO coupled to a thiolated derivative of hydroxyethyl starch (HES). It was aimed to assess the ability of S-NO-HES to serve as an NO donor under a variety of in vitro simulated physiologic conditions, which might be the first step to qualify this molecule as a novel type of NO donor-fluid. METHODS: We studied the effect of temperature on NO-releasing properties of S-NO-HES in blood, at 34°C, 37°C, and 41°C. Ascorbic acid (Asc) and amylase were also tested in a medium environment. In addition, we evaluated the activity of S-NO-HES in the isolated aortic ring and Langendorff-perfused heart setup. RESULTS: The NO release property of S-NO-HES was found at any temperature. Asc led to a significant increase in the production of NO compared to S-NO-HES incubation (P < 0.05). The addition of amylase together with Asc to the medium further increased the release of NO (P < 0.05). S-NO-HES exerted significant vasodilatory effects on phenylephrine precontracted aortic rings that were dose-dependent (P < 0.01). Furthermore, S-NO-HES significantly increased the heart rate and additionally reduced the duration of the cardiac action potential, as indicated by a reduction of QTc-B values (P < 0.01). CONCLUSIONS: We demonstrated for the first time that the S-NO-HES molecule exhibited its NO-releasing effects. The effectiveness of this new NO donor to substitute NO deficiency under septic conditions or in other indications needs to be studied.
Assuntos
Derivados de Hidroxietil Amido , Hipotensão , Humanos , Derivados de Hidroxietil Amido/farmacologia , Derivados de Hidroxietil Amido/uso terapêutico , Óxido Nítrico , Frequência Cardíaca , Amilases , Amido/farmacologia , Substitutos do PlasmaRESUMO
BACKGROUND: The sublingual microcirculation presumably exhibits disease-specific changes in function and morphology. Algorithm-based quantification of functional microcirculatory hemodynamic variables in handheld vital microscopy (HVM) has recently allowed identification of hemodynamic alterations in the microcirculation associated with COVID-19. In the present study we hypothesized that supervised deep machine learning could be used to identify previously unknown microcirculatory alterations, and combination with algorithmically quantified functional variables increases the model's performance to differentiate critically ill COVID-19 patients from healthy volunteers. METHODS: Four international, multi-central cohorts of critically ill COVID-19 patients and healthy volunteers (n = 59/n = 40) were used for neuronal network training and internal validation, alongside quantification of functional microcirculatory hemodynamic variables. Independent verification of the models was performed in a second cohort (n = 25/n = 33). RESULTS: Six thousand ninety-two image sequences in 157 individuals were included. Bootstrapped internal validation yielded AUROC(CI) for detection of COVID-19 status of 0.75 (0.69-0.79), 0.74 (0.69-0.79) and 0.84 (0.80-0.89) for the algorithm-based, deep learning-based and combined models. Individual model performance in external validation was 0.73 (0.71-0.76) and 0.61 (0.58-0.63). Combined neuronal network and algorithm-based identification yielded the highest externally validated AUROC of 0.75 (0.73-0.78) (P < 0.0001 versus internal validation and individual models). CONCLUSIONS: We successfully trained a deep learning-based model to differentiate critically ill COVID-19 patients from heathy volunteers in sublingual HVM image sequences. Internally validated, deep learning was superior to the algorithmic approach. However, combining the deep learning method with an algorithm-based approach to quantify the functional state of the microcirculation markedly increased the sensitivity and specificity as compared to either approach alone, and enabled successful external validation of the identification of the presence of microcirculatory alterations associated with COVID-19 status.