Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 319, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949159

RESUMO

Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer's disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Proteoma/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Mapeamento Encefálico , Disfunção Cognitiva/metabolismo , Função Executiva/fisiologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Memória/fisiologia , Camundongos , Vias Neurais
2.
J Neurosci ; 31(5): 1635-43, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289172

RESUMO

An established memory can be made transiently labile if retrieved or reactivated. Over time, it becomes again resistant to disruption and this process that renders the memory stable is termed reconsolidation. The reasons why a memory becomes labile after retrieval and reconsolidates still remains debated. Here, using inhibitory avoidance learning in rats, we provide evidence that retrievals of a young memory, which are accompanied by its reconsolidation, result in memory strengthening and contribute to its overall consolidation. This function associated to reconsolidation is temporally limited. With the passage of time, the stored memory undergoes important changes, as revealed by the behavioral outcomes of its retrieval. Over time, without explicit retrievals, memory first strengthens and becomes refractory to both retrieval-dependent interference and strengthening. At later times, the same retrievals that lead to reconsolidation of a young memory extinguish an older memory. We conclude that the storage of information is very dynamic and that its temporal evolution regulates behavioral outcomes. These results are important for potential clinical applications.


Assuntos
Aprendizagem da Esquiva , Cicloeximida/farmacologia , Extinção Psicológica , Inibição Psicológica , Memória , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Cicloeximida/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Memória/efeitos dos fármacos , Rememoração Mental , Testes Neuropsicológicos , Inibidores da Síntese de Proteínas/administração & dosagem , Ratos , Ratos Long-Evans , Retenção Psicológica , Fatores de Tempo
3.
Prog Brain Res ; 154: 15-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17010701

RESUMO

The detailed microanatomical study of the human cerebral cortex began in 1899 with the experiments of Santiago Ramón y Cajal, who applied the Golgi method to define the structure of the visual, motor, auditory and olfactory cortex. In the first article of this series, he described a special type of interneuron in the visual cortex capable of exerting its influence in the vertical dimension. These neurons are now more commonly referred to as double-bouquet cells (DBCs). The DBCs are readily distinguished owing to their characteristic axons that give rise to tightly interwoven bundles of long, vertically oriented axonal collaterals resembling a horsetail (DBC horsetail). Nevertheless, the most striking characteristic of these neurons is that they are so numerous and regularly distributed that the DBC horsetails form a microcolumnar structure. In addition, DBCs establish hundreds of inhibitory synapses within a very narrow column of cortical tissue. These features have generated considerable interest in DBCs over recent years, principally among those researchers interested in the analysis of cortical circuits. In the present chapter, we shall discuss the morphology, synaptic connections and neurochemical features of DBCs that have been defined through the study of these cells in different cortical areas and species. We will mainly consider the immunocytochemical studies of DBCs that have been carried out in the visual cortex (areas 17 and 18) of human and macaque monkey. We will see that there are important differences in the morphology, number and distribution of DBC horsetails between areas 17 and 18 in the primate. This suggests important differences in the microcolumnar organization between these areas, the functional significance of which awaits detailed correlative physiological and microanatomical studies.


Assuntos
Neurônios/citologia , Sinapses/fisiologia , Córtex Visual/citologia , Animais , Mapeamento Encefálico , Haplorrinos , Humanos , Inibição Neural/fisiologia , Vias Neurais , Sinapses/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 103(8): 2920-5, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16473933

RESUMO

The axon initial segment (AIS) of pyramidal cells is a critical region for the generation of action potentials and for the control of pyramidal cell activity. Here we show that Na+ and K+ voltage-gated channels, together with other molecules involved in the localization of ion channels, are distributed asymmetrically in the AIS of pyramidal cells situated in the human temporal neocortex. There is a high density of Na+ channels distributed along the length of the AIS together with the associated proteins spectrin betaIV and ankyrin G. In contrast, Kv1.2 channels are associated with the adhesion molecule Caspr2, and they are mostly localized to the distal region of the AIS. In general, the distal region of the AIS is targeted by the GABAergic axon terminals of chandelier cells, whereas the proximal region is innervated, mostly by other types of GABAergic interneurons. We suggest that this molecular segregation and the consequent regional specialization of the GABAergic input to the AIS of pyramidal cells may have important functional implications for the control of pyramidal cell activity.


Assuntos
Axônios/química , Córtex Cerebral/citologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/análise , Células Piramidais/química , Canais de Sódio/análise , Adulto , Anquirinas/análise , Anquirinas/metabolismo , Axônios/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/análise , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Humanos , Canal de Potássio Kv1.2/análise , Canal de Potássio Kv1.2/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Terminações Pré-Sinápticas/química , Células Piramidais/metabolismo , Nós Neurofibrosos/química , Canais de Sódio/metabolismo , Espectrina/análise , Espectrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA