Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 944: 173925, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866162

RESUMO

Climate change and human activities drive widespread shrub encroachment in global grassland ecosystems, particularly in the Eurasian steppe. Caragana shrubs, the primary contributors to shrub encroachment in this region, play a crucial role in shaping the ecosystem's structure and function. Future changes in the suitable distribution range of Caragana species will directly affect the ecological security and sustainable socio-economic development of the Eurasian steppe ecosystem. We used an ensemble modeling approach to predict Caragana shrub-dominated plant communities' current and future distribution in three major steppe subregions: the Black Sea-Kazakhstan steppe, the Tibetan Plateau steppe, and the Central Asian steppe. We assessed the potential risk of Caragana shrub encroachment by predicting changes in the suitable distribution area of 19 Caragana shrub species under future climate changes. Our research findings suggest that the expansion of Caragana species in different subregions of the Eurasian steppe is influenced by the effects of climate change in various ways. The distribution of Caragana species is primarily influenced by precipitation and temperature, and the global human modification (ghm) has a significant impact on the Central Asian and Tibetan Plateau subregions. Minimal changes are expected in the Black Sea-Kazakhstan subregion, a slight increase on the Tibetan Plateau, and a substantial rise in the Central Asian subregion, which suggests a higher potential risk of Caragana species shrub encroachment in that area. Our research provides valuable insights into the response of Caragana shrub encroachment to changing climates and human activities. It also has implications for the sustainable management of different areas of the vast Eurasian steppe ecosystem.


Assuntos
Caragana , Mudança Climática , Pradaria , Monitoramento Ambiental , Ecossistema
2.
Sci Total Environ ; 934: 173128, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734106

RESUMO

Grazing potential represents the potential carrying capacity of steppe livestock production. Understanding the impact of changes in plant diversity and community structure on ecosystem multifunctionality (EMF) at different grazing potentials is crucial for the sustainable management of steppe ecosystems. We examined the associations between plant diversity, community structure, above-ground ecosystem multifunctionality (AEMF), and below-ground ecosystem multifunctionality (BEMF) at various grazing potentials. Our assessment employed generalized linear mixed-effects models and structural equation models to determine the impact of these factors on ecosystem multifunctionality. Our study results indicated that ecosystem multifunctionality differed depending on the level of grazing potential and decreased as grazing potential declined. The impact of plant diversity and community structure on above- and below-ground ecosystem multifunctionality varied. Plant diversity and community structure correlated more with AEMF than BEMF. Plant diversity had the most significant effect on EMF under high grazing potential, while community structure had the greatest effect on EMF under moderate and low grazing potential. These improve our understanding of the correlation between steppe plant diversity, community structure, and above- and below-ground ecosystem multifunctionality. This understanding is necessary to develop strategies to increase plant diversity or regulate community structure and the sustainability of steppes.


Assuntos
Biodiversidade , Pradaria , Herbivoria , Animais , Plantas , Ecossistema , Gado/fisiologia , Monitoramento Ambiental , Conservação dos Recursos Naturais
3.
Sci Total Environ ; 927: 172206, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580124

RESUMO

Brandt's vole (Lasiopodomys brandtii), a typical rodent in the eastern Eurasian Steppe, has unclear impacts on ecosystem stability. In our field study in the Hulun Buir steppe, a multifunctional grazing ecosystem in this region, we used burrow entrance area and burrow density as alternative disturbance indices to derive a Disturbance Index (DI) for quantifying disturbance levels from rodents, and employed generalized linear mixed-effects model and the N-dimensional hypervolume framework to assess the influence of Brandt's vole disturbance on plant and soil functions, and then on the ecosystem functional stability. Our findings unequivocally illustrate that various plant functions including vegetation cover (Cover), aboveground biomass (ABG) and shoot carbon (ShootC) significantly declined with increasing disturbance, while shoot nitrogen (ShootN) and root nitrogen (RootN) show significantly positive responses. Soil functions such as soil nitrogen (SoilN), soil phosphorus (SoilP) and soil organic carbon (SoilC) showed significantly negative responses. Notably, the burrow entrance area exerts a more pronounced impact on both plant and soil functions in comparison to burrow density. Additionally, both disturbance indicators have a more significant influence on plant functions than on soil functions. Overall, the ecosystem functional stability progressively decreases with intensified disturbance, with varying response patterns for plant and soil functions, the former exhibited heightened stability as disturbance intensified, while the latter proved more stable at moderate disturbance levels. Our findings suggest that plant functions were more susceptible to disturbance by Brandt's vole compared to soils. Additionally, an ecosystem destabilization was synchronized with increasing Brandt's vole disturbance, although alterations in the functional stability of plants and soil show a different pattern.


Assuntos
Arvicolinae , Ecossistema , Pradaria , Solo , Animais , Solo/química , Arvicolinae/fisiologia , Plantas , Carbono/metabolismo , China , Monitoramento Ambiental , Biomassa , Nitrogênio/análise
4.
Sci Total Environ ; 887: 164158, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37187396

RESUMO

Ecosystem functioning plays a crucial role in maintaining human welfare. Terrestrial ecosystems provide multiple ecosystem services simultaneously, such as carbon sequestration, nutrient cycling, water purification, and biodiversity conservation, known as ecosystem multifunctionality (EMF). However, the mechanisms by which biotic and abiotic factors, and their interactions regulate EMF in grasslands are unclear. We conducted a transect survey to illustrate the single and combined effects of biotic factors (including plant species diversity, trait-based functional diversity, community-weighted mean (CWM) of traits, and soil microbial diversity) and abiotic factors (including climate and soil) on EMF. Eight functions were investigated, including aboveground living biomass and litter biomass, soil bacterial biomass, fungal biomass, arbuscular mycorrhizal fungi biomass, and soil organic carbon storage, total carbon storage and total nitrogen storage. We detected a significant interactive effect between plant species diversity and soil microbial diversity on the EMF; Structural equation model showed that soil microbial diversity indirectly affected EMF by regulating plant species diversity. These findings highlight the importance of the interaction effect of above- and below-ground diversity on EMF. Both plant species diversity and functional diversity had similar explanatory power for the variation in EMF, implying that niche differentiation and multifunctional complementarity among plant species and traits are essential in regulating the EMF. Furthermore, the effects of abiotic factors on EMF were stronger than those of biotic factors via direct and indirect pathways affecting above- and below-ground biodiversity. As a dominant regulator, the soil sand content was negatively correlated with EMF. These findings indicate the vital role of abiotic mechanisms in affecting EMF, and deepen our understanding of the single and combined effects of biotic and abiotic factors on EMF. We conclude that soil texture and plant diversity, representing crucial abiotic and biotic factors, respectively, are important determinants of the EMF of grasslands.


Assuntos
Ecossistema , Pradaria , Humanos , Carbono , Solo/química , Biodiversidade , China , Biomassa , Plantas
5.
Plants (Basel) ; 12(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903909

RESUMO

Soil microorganisms play crucial roles in improving nutrient cycling, maintaining soil fertility in desert ecosystems such as the West Ordos desert ecosystem in Northern China, which is home to a variety of endangered plants. However, the relationship between the plants-microorganisms-soil in the West Ordos desert ecosystem is still unclear. Tetraena mongolica, an endangered and dominant plant species in West Ordos, was selected as the research object in the present study. Results showed that (1) there were ten plant species in the Tetraena mongolica community, belonging to seven families and nine genera, respectively. The soil was strongly alkaline (pH = 9.22 ± 0.12) and the soil nutrients were relatively poor; (2) fungal diversity was more closely related to shrub diversity than bacterial and archaeal diversity; (3) among the fungal functional groups, endomycorrhizal led to a significant negative correlation between shrub diversity and fungal diversity, because endomycorrhizal had a significant positive effect on the dominance of T. mongolica, but had no significant effect on other shrubs; (4) plant diversity had a significant positive correlation with the soil inorganic carbon (SIC), total carbon (TC), available phosphorus (AVP) and available potassium (AVK). This study revealed the effects of soil properties and soil microorganisms on the community structure and the growth of T. mongolica and provided a theoretical basis for the conservation of T. mongolica and the maintenance of biodiversity in desert ecosystems.

6.
PLoS One ; 15(9): e0239268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991580

RESUMO

Nitraria sibirica Pall. is a shrub species belonging to the family of Nitrariaceae. It plays pivotal role in arid ecosystems since it is tolerant to high salinity and drought. This species is widely distributed throughout Mongolia and it is mostly found in arid ecosystems of Mongolian Gobi Desert. In this study, we developed allometric equations for estimating above-ground biomass of N. sibirica using various structural descriptors and pinpointed the best models. Variables that precisely predicted above-ground biomass were a combination of basal diameter, crown area, and height. The allometric growth equation constructed is not merely helpful to achieve accurate estimations of the above-ground biomass in shrub vegetation in the Gobi Desert of Mongolia, but also can provide a reference for the above-ground biomass of Nitraria species growing in analogous habitats worldwide. Therefore, our research purposes an important advance for biomass estimation in Gobi ecosystems and complements previous studies of shrub biomass worldwide. This study provides reasonable estimates of biomass of N. sibirica, which will be valuable in evaluations of biological resources, especially for quantifying the main summer diet of Gobi bears, and also can be an alternative tool for assessing carbon cycling in Gobi Desert.


Assuntos
Clima Desértico , Ecossistema , Magnoliopsida/crescimento & desenvolvimento , Biomassa , Mongólia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA