Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132000, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473571

RESUMO

The presence of exorbitant arsenic contamination in the aquatic environment causes astronomically immense health quandaries affecting millions of people, which may lead to death in the case of prolonged indigestion of arsenic-containing drinking water. Herein, we are reporting porous chelating resin with an iron precursor for the removal of arsenic ions from water. Weak acid cation resin was functionalized under varying experimental conditions to get a suitable resin with high arsenic uptake. The theoretical results revealed that the maximum Langmuir adsorption capacities of 3.27 mg g-1 and 1.13 mg g-1 were achieved for As(V) and As(III), respectively. The kinetics of adsorption followed the pseudo-second-order (PSO) model with a high determination coefficient (R2) of 0.9963 and 0.9895 for As(V) and As(III), respectively. The Adams-Bohart, Thomas, Yoon-Nelson, and Pore diffusion models were used to identify the breakthrough curve in the fixed bed adsorption column. The column performance improved with a larger bed height (55 cm), low concentration of influent (0.25 mg L-1), and low flow rate of influent (80 mL min-1). Under this condition, the breakthrough time and exhaustion time were 314 min and 408 min for As(V) and 124 min and 185 min for As(III), respectively.

2.
Environ Sci Pollut Res Int ; 30(30): 76085-76103, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37233927

RESUMO

Two-dimensional MXene with layered structure has recently emerged as a nanomaterial with fascinating characteristics and applicability. Herein, we prepared the newly modified magnetic MXene (MX/Fe3O4) nanocomposite using solvothermal approach and investigated its adsorption behavior to study the removal efficiency of Hg(II) ions from aqueous solution. The effect of adsorption parameters such as adsorbent dose, time, concentration, and pH were optimized using response surface methodology (RSM). The experimental data fitted well with quadratic model to predict the optimum conditions for maximum Hg(II) ion removal efficiency which were found to be at adsorbent dose 0.871 g/L, time 103.6 min, concentration 40.17 mg/L, and 6.5 pH respectively. To determine the adequacy of the developed model, a statistical analysis of variance (ANOVA) was used, which demonstrated high agreement between the experimental data and the suggested model. According to isotherm result, the experimental data were following the best agreement with the Redlich-Peterson isotherm model. The results of the experiments revealed that the maximum Langmuir adsorption capacity of 699.3 mg/g was obtained at optimum conditions, which was closed to the experimental adsorption capacity of 703.57 mg/g. The adsorption phenomena was well represented by the pseudo-second-order model (R2 = 0.9983). On the whole, it was clear that MX/Fe3O4 has lot of potential as a Hg(II) ion impurity removal agent in aqueous solutions.


Assuntos
Mercúrio , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Mercúrio/análise , Água/química , Magnetismo , Adsorção , Cinética , Concentração de Íons de Hidrogênio
3.
Environ Pollut ; 323: 121255, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775131

RESUMO

In the present scenario discharge of heavy-metal ions into water bodies is a global threat that is causing serious health hazards even in low concentrations. Thus, in order to remediate the heavy-metal [Hg(II) and Pb(II)] toxicity, an organic-inorganic hybrid functional porous metallo-polymeric network i. e, poly(Zirconyl methacrylate-co-1-vinyl imidazole) (pZrVIm) was fabricated via one-pot facile synthesis approach. The pZrVIm architecture has shown high removal efficiency for Hg(II) and Pb(II) aqueous medium even in extremely low quantities. Advanced instrumental techniques were used to characterize the structural and morphological characteristics of pZrVIm. Different experimental variables i.e., reaction time, pH, initial feed concentration, co-ion effects etc. were explored to examine adsorption behaviour. The maximum adsorption capacities (qmax) of pZrVIm5 were calculated as 168.06 and 162.34 mg g-1 for Hg(II) and Pb(II) respectively by the Langmuir isotherm model. Data from isotherms showed that monolayer adsorption on a homogeneous surface is the rate-limiting stage and followed pseudo-second-order kinetic process. The Artificial Neural Network (ANN) modelling was used to validate kinetics and isotherm data which revealed high accuracy of the model with correlation coefficient values (R = 0.99). Various types of isotherm models such as Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Redlich-Peterson, Toth and Koble-Corigen have been studied to determine the adsorption phenomena. The pore diffusion model revealed breakthrough time of 91 h and 84 h, Hg(II) and Pb(II) with the feed concentration of 15 mg L-1 respectively. The study revealed that pZrVIm5 has great potential for heavy metal ions remediation for water treatment.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Chumbo , Porosidade , Mercúrio/química , Polímeros , Íons , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA