Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Infect Dis ; 8(10): 2133-2148, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36102590

RESUMO

Polymers of d-glutamic acid (PDGA) form the capsule of the highly virulent Ames strain of B. anthracis. PDGA is antiphagocytic and weakly immunogenic; it enables the bacteria to evade the innate immune responses. CapD is an enzyme that catalyzes the covalent anchoring of PDGA. CapD is an Ntn-amido hydrolase that utilizes an internal Thr-352 as its nucleophile and general acid and base. An internal cleavage produces a free N-terminal Thr-352 and a short and long polypeptide chain. The chains were circularly permuted (CP) to move Thr-352 to the N-terminus of the polypeptide. We previously showed that a branched PEG-CapDS334C-CP could protect mice (80% survival) against a 5 LD50 challenge with B. anthracis Ames without the use of antibiotics, monoclonals, or vaccines. In attempts to improve the in vivo circulation time of CapD and enhance its avidity to its polymeric substrate, an Fc-domain of a mouse IgG1 was fused to CapDS334C-CP and the linker length and sequence were optimized. The resulting construct, Fc-CapDS334C-CP, then was pegylated with a linear 2 kDa mPEG at S334C to produce mPEG-Fc-CapDS334C-CP. Interestingly, the fusion of the Fc-domain and incorporation of the S334C mutation imparted acid stability, but slightly reduced the kcat (∼ 2-fold lower). In vivo, the measured protein concentration in sera was higher for the Fc-fusion constructs compared to the mPEG-Fc-CapDS334C-CP. However, the exposure calculated from measured sera enzymatic activity was higher for the mPEG-CapDS334C-CP. The pegylated Fc-fusion was less active than the PEG-CapDS334C-CP, but detectable in sera at 24 h by immunoblot. Here we describe the engineering of a soluble, active, pegylated Fc-fusion of B. anthracis CapD (mPEG-Fc-CapD-CP) with activity in vitro, in serum, and on encapsulated bacteria.


Assuntos
Antraz , Bacillus anthracis , Animais , Antraz/tratamento farmacológico , Antraz/microbiologia , Antibacterianos/metabolismo , Bacillus anthracis/genética , Ácido Glutâmico/metabolismo , Hidrolases/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Polietilenoglicóis
2.
Microb Pathog ; 155: 104919, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915206

RESUMO

Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo , Melioidose , Aerossóis , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Mormo/diagnóstico , Cavalos , Macaca mulatta
3.
J Infect Dis ; 223(2): 319-325, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32697310

RESUMO

BACKGROUND: Inhalational anthrax is rare and clinical experience limited. Expert guidelines recommend treatment with combination antibiotics including protein synthesis-inhibitors to decrease toxin production and increase survival, although evidence is lacking. METHODS: Rhesus macaques exposed to an aerosol of Bacillus anthracis spores were treated with ciprofloxacin, clindamycin, or ciprofloxacin + clindamycin after becoming bacteremic. Circulating anthrax lethal factor and protective antigen were quantitated pretreatment and 1.5 and 12 hours after beginning antibiotics. RESULTS: In the clindamycin group, 8 of 11 (73%) survived demonstrating its efficacy for the first time in inhalational anthrax, compared to 9 of 9 (100%) with ciprofloxacin, and 8 of 11 (73%) with ciprofloxacin + clindamycin. These differences were not statistically significant. There were no significant differences between groups in lethal factor or protective antigen levels from pretreatment to 12 hours after starting antibiotics. Animals that died after clindamycin had a greater incidence of meningitis compared to those given ciprofloxacin or ciprofloxacin + clindamycin, but numbers of animals were very low and no definitive conclusion could be reached. CONCLUSION: Treatment of inhalational anthrax with clindamycin was as effective as ciprofloxacin in the nonhuman primate. Addition of clindamycin to ciprofloxacin did not enhance reduction of circulating toxin levels.


Assuntos
Antraz/sangue , Antraz/prevenção & controle , Antígenos de Bactérias/sangue , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/fisiologia , Toxinas Bacterianas/sangue , Ciprofloxacina/uso terapêutico , Clindamicina/uso terapêutico , Infecções Respiratórias/sangue , Infecções Respiratórias/prevenção & controle , Animais , Antraz/microbiologia , Antraz/mortalidade , Antibacterianos/uso terapêutico , Biomarcadores , Ciprofloxacina/farmacologia , Clindamicina/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Macaca mulatta , Prognóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/mortalidade , Resultado do Tratamento
4.
Eukaryot Cell ; 8(11): 1770-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749173

RESUMO

The mammalian sterol regulatory element-binding protein (SREBP) homolog, Sre1, is important for adaptation and growth of Cryptococcus neoformans in the mouse brain, where oxygen concentration and nutritional conditions are suboptimal for fungal growth. The extent of conservation of the SREBP pathway in C. neoformans or in any other fungi, however, has not been investigated. We generated mutants susceptible to low oxygen and identified six genes that play a role in the SREBP pathway. Three of these genes (SFB2, KAP123, and GSK3) are not known to be involved in the SREBP pathway in other fungi. Furthermore, we show that C. neoformans contains an additional gene, DAM1, which functions in the SREBP pathway but is yet to be described. Mutants associated with the steps prior to formation of the nuclear Sre1 form dramatically reduced accumulation of the nuclear form under low-oxygen conditions. Concurrently, two mutant strains, scp1Delta and stp1Delta, and the previously isolated sre1Delta strain showed reduction in ergosterol levels, hypersensitivity to several chemical agents, including azole antifungals, CoCl(2), and compounds producing reactive oxygen or nitrogen species, and most importantly, reduced virulence in mice. Mutants affecting genes involved in later steps of the Sre1 pathway, such as those required for import and phosphorylation of proteins in the nucleus, showed less compelling phenotypes. These findings suggest that the SREBP pathway is highly conserved in C. neoformans and it serves as an important link between sterol biosynthesis, oxygen sensing, CoCl(2) sensitivity, and virulence in C. neoformans.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Evolução Biológica , Cryptococcus neoformans/genética , Feminino , Proteínas Fúngicas/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Esteróis/metabolismo , Virulência
5.
PLoS Pathog ; 4(9): e1000155, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18802457

RESUMO

Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investigate the oxygen sensing mechanism in C. neoformans, we screened T-DNA insertional mutants for hypoxia-mimetic cobalt chloride (CoCl(2))-sensitive mutants. All the CoCl(2)-sensitive mutants had a growth defect under low oxygen conditions at 37 degrees C. The majority of mutants are compromised in their mitochondrial function, which is reflected by their reduced rate of respiration. Some of the mutants are also defective in mitochondrial membrane permeability, suggesting the importance of an intact respiratory system for survival under both high concentrations of CoCl(2) as well as low oxygen conditions. In addition, the mutants tend to accumulate intracellular reactive oxygen species (ROS), and all mutants show sensitivity to various ROS generating chemicals. Gene expression analysis revealed the involvement of several pathways in response to cobalt chloride. Our findings indicate cobalt chloride sensitivity and/or sensitivity to low oxygen conditions are linked to mitochondrial function, sterol and iron homeostasis, ubiquitination, and the ability of cells to respond to ROS. These findings imply that multiple pathways are involved in oxygen sensing in C. neoformans.


Assuntos
Anaerobiose , Cobalto/farmacologia , Cryptococcus neoformans/fisiologia , Viabilidade Microbiana , Mitocôndrias/fisiologia , Adaptação Fisiológica , Cryptococcus neoformans/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes e Vias Metabólicas , Espécies Reativas de Oxigênio/metabolismo
6.
Infect Immun ; 73(3): 1423-31, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15731040

RESUMO

We have previously identified mgrA (rat) as a regulator of autolysis in Staphylococcus aureus. Besides its effect on autolytic activity, we recently found alterations in the expression of regulator and target virulence genes in the mgrA mutant. Northern analysis and transcription fusion assays showed that inactivation of mgrA has led to the downregulation of RNAIII of agr and hla and upregulation of sarS and spa. Although both SarA and agr are activators of alpha-hemolysin and a repressors of protein A synthesis, we found that the transcription of sarA was not affected in the mgrA mutant and vice versa, indicating that MgrA likely regulates hla and spa in a SarA-independent manner. Previously we have shown that SarT, a SarA homolog, is a repressor of hla and an activator of spa, presumably by activating SarS, however, analysis of the double sarT mgrA mutant for hla and spa transcription indicated that the mgrA-mediated effect is not mediated via sarT. Our results further demonstrated that the mgrA gene product regulates hla and spa expression in a dual fashion, with the first being agr dependent and the second agr independent. In the agr-independent pathway, MgrA binds directly to hla and the sarS promoter to modulate alpha-hemolysin and protein A expression. Thus, our studies here have defined the nature of interaction of mgrA with other regulators such as agr, sarS, and sarT and its role in regulating hla and spa transcription within the virulence regulatory network of S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Virulência , Fatores de Virulência/genética
7.
J Bacteriol ; 186(16): 5267-80, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15292128

RESUMO

The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, sae, arlRS, lytSR, and sarA-like genes. Here we described a novel transcriptional regulator called sarV of the SarA protein family. The transcription of sarV is low or undetectable under in vitro conditions but is significantly augmented in sarA and mgrA (norR or rat) (SA0641) mutants. The sarA and mgrA genes act as repressors of sarV expression, as confirmed by transcriptional fusion and Northern analysis data. Purified SarA and MgrA proteins bound specifically to separate regions of the sarV promoter as determined by gel shift and DNase I footprinting assays. The expression of 19 potential target genes involved in autolysis and virulence, phenotypes affected by sarA and mgrA, was evaluated in an isogenic sarV mutant pair. Our data indicated that the sarV gene product played a role regulating some virulence genes and more genes involved in autolysis. The sarV mutant was more resistant to Triton X-100 and penicillin-induced lysis compared to the wild type and the sarA mutant, whereas hyperexpression of sarV in the parental strain or the sarV mutant rendered the resultant strain highly susceptible to lysis. Zymographic analysis of murein hydrolase activity revealed that inactivation of the sarV gene results in decreased extracellular murein hydrolase activity compared to that of wild-type S. aureus. We propose that sarV may be part of the common pathway by which mgrA and sarA gene products control autolysis in S. aureus.


Assuntos
Proteínas de Bactérias/fisiologia , Bacteriólise , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Animais , Antibacterianos/farmacologia , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Detergentes/farmacologia , Deleção de Genes , Genes Bacterianos , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/análise , Octoxinol/farmacologia , Penicilinas/farmacologia , Regiões Promotoras Genéticas , RNA Bacteriano/análise , RNA Mensageiro/análise , Ratos , Staphylococcus aureus/genética , Transativadores/genética , Transativadores/isolamento & purificação , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Transcrição Gênica , Fatores de Virulência/genética
8.
Microbiology (Reading) ; 145 ( Pt 8): 1903-1910, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10463156

RESUMO

The biosynthesis of inositol requires only two enzymes, inositol-1-phosphate synthase (encoded by INO1) and an inositol monophosphatase, but the regulation of inositol biosynthesis is under multiple controls and is exquisitely regulated. In the budding yeast Saccharomyces cerevisiae, mutations in any of 26 different genes lead to inositol auxotrophy. The fission yeast Schizosaccharomyces pombe, however, is a natural inositol auxotroph. An investigation has been initiated to examine the possible reasons that might have led to inositol auxotrophy in Sch. pombe. Complementation with a genomic library of an inositol prototrophic yeast indicated that a Pichia pastoris INO1 gene alone could confer inositol prototrophy to Sch. pombe and that the gene was absent in Sch. pombe. To investigate possible reasons for the loss of INO1 gene in Sch. pombe, an attempt was made to disrupt inositol homeostasis in Sch. pombe by overproduction of intracellular inositol, but this did not lead to any discernible adverse effects. The sources of inositol in the natural environment of Sch. pombe were also examined. As the natural environment of Sch. pombe contains significant amounts of phytic acid (inositol hexaphosphate), an investigation was carried out and it was discovered that Sch. pombe can utilize phytic acid as a source of inositol under very specific conditions.


Assuntos
Inositol/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Clonagem Molecular , Genes Fúngicos , Teste de Complementação Genética , Dados de Sequência Molecular , Mio-Inositol-1-Fosfato Sintase/metabolismo , Fosfolipídeos/análise , Ácido Fítico/metabolismo , Pichia/enzimologia , Pichia/genética , Plasmídeos/genética , Mapeamento por Restrição , Schizosaccharomyces/química , Schizosaccharomyces/crescimento & desenvolvimento , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA