Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 309: 119-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30056160

RESUMO

Olfactory ensheathing cells (OECs) are unique glia that support axon outgrowth in the olfactory system, and when used as cellular therapy after spinal cord injury, improve recovery and axon regeneration. Here we assessed the effects of combining OEC transplantation with another promising therapy, epidural electrical stimulation during a rehabilitative motor task. Sprague-Dawley rats received a mid-thoracic transection and transplantation of OECs or fibroblasts (FBs) followed by lumbar stimulation while climbing an inclined grid. We injected pseudorabies virus (PRV) into hindlimb muscles 7 months post-injury to assess connectivity across the transection. Analyses showed that the number of serotonergic (5-HT) axons that crossed the rostral scar border and the area of neurofilament-positive axons in the injury site were both greater in OEC- than FB-treated rats. We detected PRV-labeled cells rostral to the transection and remarkable evidence of 5-HT and PRV axons crossing the injury site in 1 OEC- and 1 FB-treated rat. The axons that crossed suggested either axon regeneration (OEC) or small areas of probable tissue sparing (FB). Most PRV-labeled thoracic neurons were detected in laminae VII or X, and ~25% expressed Chx10, a marker for V2a interneurons. These findings suggest potential regeneration or sparing of circuits that connect thoracic interneurons to lumbar somatic motor neurons. Despite evidence of axonal connectivity, no behavioral changes were detected in this small-scale study. Together these data suggest that when supplemented with epidural stimulation and climbing, OEC transplantation can increase axonal growth across the injury site and may promote recovery of propriospinal circuitry.


Assuntos
Axônios/fisiologia , Transplante de Células/métodos , Terapia por Estimulação Elétrica/métodos , Neuroglia/fisiologia , Bulbo Olfatório/citologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Espaço Epidural/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neuroglia/transplante , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Transdução Genética
2.
Neurobiol Aging ; 36(11): 2995-3007, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26315370

RESUMO

Cluster of Differentiation-200 (CD200) is an anti-inflammatory glycoprotein expressed in neurons, T cells, and B cells, and its receptor is expressed on glia. Both Alzheimer's disease patients and mouse models display age-related or amyloid-ß peptide (Aß)-induced reductions in CD200. The goal of this study was to determine if neuronal CD200 expression restores hippocampal neurogenesis and reduces Aß in the amyloid precursor protein mouse model. Amyloid precursor protein and wild-type mice were injected at 6 months of age with an adeno-associated virus expressing CD200 into the hippocampus and sacrificed at 12 months. CD200 expression restored neural progenitor cell proliferation and differentiation in the subgranular and granular cell layers of the dentate gyrus and reduced diffuse but not thioflavin-S(+) plaques in the hippocampus. In vitro studies demonstrated that CD200-stimulated microglia increased neural differentiation of neural stem cells and enhanced axon elongation and dendrite number. CD200 also enhanced Aß uptake by microglia. These data indicate that CD200 is capable of enhancing microglia-mediated Aß clearance and neural differentiation and has potential as a therapeutic for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígenos CD/fisiologia , Hipocampo/fisiologia , Neurogênese/genética , Fagocitose/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos CD/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/citologia , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Células-Tronco/citologia
3.
Physiol Behav ; 105(2): 554-9, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21945865

RESUMO

Previous research showed that axonal inputs to both anterior and posterior subdivisions of the medial amygdala from the main and accessory olfactory bulbs of female mice, respectively, process volatile and non-volatile pheromonal signals from male conspecifics. In the present study we found that bilateral electrolytic lesions that included posterior portions, but not the anterior subdivision alone of the medial amygdala (Me) blocked the preference of estrous female mice to investigate volatile urinary odors from testes-intact vs. castrated males. Similar results were obtained in separate tests in which nasal contact with urinary stimuli was permitted. In addition, total time investigating volatile urinary stimuli was reduced in subjects with posterior Me lesions. Subjects were able to discriminate volatile urinary odors from testes-intact vs. castrated male mice, suggesting that this disruption of odor preference did not result from the inability of females given amygdaloid lesions to discriminate these male urinary odors. Bilateral lesions of the Me that were either restricted to the anterior or posterior subdivisions, or included areas of both regions, caused significant reductions in the display of lordosis behavior in estrous female mice. Our results suggest that the Me is a critical segment of the olfactory circuit that controls both mate recognition and mating behavior in the female mouse.


Assuntos
Tonsila do Cerebelo/lesões , Discriminação Psicológica/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Postura/fisiologia , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/fisiologia , Análise de Variância , Animais , Discriminação Psicológica/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Masculino , Camundongos , Condutos Olfatórios/efeitos dos fármacos , Orquiectomia , Ovariectomia , Caracteres Sexuais , Comportamento Sexual Animal/efeitos dos fármacos , Urina/química
4.
Proc Natl Acad Sci U S A ; 108(49): E1339-48, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22042871

RESUMO

The adult hippocampus plays a central role in memory formation, synaptic plasticity, and neurogenesis. The subgranular zone of the dentate gyrus contains neural progenitor cells with self-renewal and multilineage potency. Transgene expression of familial Alzheimer's disease-linked mutants of ß-amyloid precursor protein (APP) and presenilin-1 leads to a significant inhibition of neurogenesis, which is potentially linked to age-dependent memory loss. To investigate the effect of neurogenesis on cognitive function in a relevant disease model, FGF2 gene is delivered bilaterally to the hippocampi of APP+presenilin-1 bigenic mice via an adenoassociated virus serotype 2/1 hybrid (AAV2/1-FGF2). Animals injected with AAV2/1-FGF2 at a pre- or postsymptomatic stage show significantly improved spatial learning in the radial arm water maze test. A neuropathological investigation demonstrates that AAV2/1-FGF2 injection enhances the number of doublecortin, BrdU/NeuN, and c-fos-positive cells in the dentate gyrus, and the clearance of fibrillar amyloid-ß peptide (Aß) in the hippocampus. AAV2/1-FGF2 injection also enhances long-term potentiation in another APP mouse model (J20) compared with control AAV2/1-GFP-injected littermates. An in vitro study confirmed the enhanced neurogenesis of mouse neural stem cells by direct AAV2/1-FGF2 infection in an Aß oligomer-sensitive manner. Further, FGF2 enhances Aß phagocytosis in primary cultured microglia, and reduces Aß production from primary cultured neurons after AAV2/1-FGF2 infection. Thus, our data indicate that virus-mediated FGF2 gene delivery has potential as an alternative therapy of Alzheimer's disease and possibly other neurocognitive disorders.


Assuntos
Doença de Alzheimer/metabolismo , Transtornos Cognitivos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipocampo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Transtornos Cognitivos/genética , Transtornos Cognitivos/terapia , Giro Denteado/metabolismo , Giro Denteado/patologia , Dependovirus/genética , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imuno-Histoquímica , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA