Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(66): 16274, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34779549

RESUMO

Invited for the cover of this issue are Daisuke Tanaka at Kwansei Gakuin University and co-workers at Kwansei Gakuin University, Hokkaido University, Kyoto University, Japan and KU Leuven, Belgium. The image is a depiction of exploring the desired crystal by decision tree analysis. Read the full text of the article at 10.1002/chem.202102404.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Humanos
2.
Chemistry ; 27(66): 16347-16353, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34623003

RESUMO

Novel metal-organic frameworks containing lanthanide double-layer-based secondary building units (KGF-3) were synthesized by using machine learning (ML). Isolating pure KGF-3 was challenging, and the synthesis was not reproducible because impurity phases were frequently obtained under the same synthetic conditions. Thus, dominant factors for the synthesis of KGF-3 were identified, and its synthetic conditions were optimized by using two ML techniques. Cluster analysis was used to classify the obtained powder X-ray diffractometry patterns of the products and thus automatically determine whether the experiments were successful. Decision-tree analysis was used to visualize the experimental results, after extracting factors that mainly affected the synthetic reproducibility. Water-adsorption isotherms revealed that KGF-3 possesses unique hydrophilic pores. Impedance measurements demonstrated good proton conductivities (σ=5.2×10-4  S cm-1 for KGF-3(Y)) at a high temperature (363 K) and relative humidity of 95 % RH.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Adsorção , Prótons , Reprodutibilidade dos Testes
3.
Angew Chem Int Ed Engl ; 60(43): 23217-23224, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34431599

RESUMO

Coordination polymers (CPs) with infinite metal-sulfur bond networks have unique electrical conductivities and optical properties. However, the development of new (-M-S-)n -structured CPs is hindered by difficulties with their crystallization. Herein, we describe the use of machine learning to optimize the synthesis of trithiocyanuric acid (H3 ttc)-based semiconductive CPs with infinite Ag-S bond networks, report three CP crystal structures, and reveal that isomer selectivity is mainly determined by proton concentration in the reaction medium. One of the CPs, [Ag2 Httc]n , features a 3D-extended infinite Ag-S bond network with 1D columns of stacked triazine rings, which, according to first-principle calculations, provide separate paths for holes and electrons. Time-resolved microwave conductivity experiments show that [Ag2 Httc]n is highly photoconductive (φΣµmax =1.6×10-4  cm2 V-1 s-1 ). Thus, our method promotes the discovery of novel CPs with selective topologies that are difficult to crystallize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA