RESUMO
Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the consequences of MM genetics, we developed a zebrafish model in which all melanocytes experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only developed from melanocytes lining internal organs, analogous to the location of patient MM. We found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs have increased migratory neural crest gene and decreased antigen presentation gene expression, consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of MM. Our work suggests the cell state of the originating melanocyte influences the behavior of derived melanomas. Our animal model phenotypically and transcriptionally mimics patient tumors, allowing this model to be used for MM therapeutic discovery.
RESUMO
In the first of many thematic issues marking the 30th anniversary of Cell Chemical Biology, we highlight the contribution of chemical biology to RNA biology in a special issue on RNA modulation. We asked several leaders in the field to share their opinions on the current challenges and opportunities in RNA biology.
RESUMO
RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.
Assuntos
Proteína Quinase CDC2 , Carcinógenos , Melanoma , Estabilidade de RNA , RNA Nuclear , Neoplasias Cutâneas , Animais , Proteína Quinase CDC2/genética , Melanoma/genética , Mutação , RNA Nuclear/genética , Neoplasias Cutâneas/genética , Peixe-Zebra , HumanosRESUMO
BACKGROUND: The use of targeted therapies and immune checkpoint inhibitors has drastically changed the management of patients with melanoma and brain metastases. Specifically, combination therapy with ipilimumab, a cytotoxic T-lymphocyte antigen 4 inhibitor, and nivolumab, a programmed cell death protein 1 inhibitor, has become a preferred systemic therapy option for patients with melanoma and asymptomatic brain metastases. However, the efficacy and toxicity profile of these agents in combination with brain-directed radiation therapy is not well described. CASE DESCRIPTION: In this case series, we highlight a series of patients with melanoma demonstrating severe radiation necrosis immediately refractory to surgical resection following brain-directed stereotactic radiation therapy with concurrent ipilimumab and nivolumab. Three patients described in this series each received stereotactic radiation therapy to a dose of 30 Gy in 5 fractions to a melanoma brain metastasis. These areas developed radiographic evidence of necrosis, which was managed surgically and progressed immediately and rapidly after resection. Re-resection, bevacizumab, steroids, and/or discontinuation of nivolumab was used to mitigate further necrosis with varying efficacy. CONCLUSIONS: Patients with metastatic melanoma receiving brain-directed radiation therapy with concurrent ipilimumab and nivolumab are at risk for developing severe, surgically refractory radiation necrosis and should be closely followed clinically and with imaging. The exact mechanism for such severe necrosis is unknown, and future studies are needed to better understand this pathophysiology and identify optimal treatment strategies.
Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Neoplasias Encefálicas/terapia , Terapia Combinada/efeitos adversos , Melanoma/secundário , Lesões por Radiação/etiologia , Radiocirurgia/efeitos adversos , Adulto , Neoplasias Encefálicas/secundário , Terapia Combinada/métodos , Feminino , Humanos , Ipilimumab/efeitos adversos , Masculino , Melanoma/terapia , Pessoa de Meia-Idade , Necrose , Nivolumabe/efeitos adversosRESUMO
Epigenetic regulators, when genomically altered, may become driver oncogenes that mediate otherwise unexplained pro-oncogenic changes lacking a clear genetic stimulus, such as activation of the WNT/ß-catenin pathway in melanoma. This study identifies previously unrecognized recurrent activating mutations in the G9a histone methyltransferase gene, as well as G9a genomic copy gains in approximately 26% of human melanomas, which collectively drive tumor growth and an immunologically sterile microenvironment beyond melanoma. Furthermore, the WNT pathway is identified as a key tumorigenic target of G9a gain-of-function, via suppression of the WNT antagonist DKK1. Importantly, genetic or pharmacologic suppression of mutated or amplified G9a using multiple in vitro and in vivo models demonstrates that G9a is a druggable target for therapeutic intervention in melanoma and other cancers harboring G9a genomic aberrations. SIGNIFICANCE: Oncogenic G9a abnormalities drive tumorigenesis and the "cold" immune microenvironment by activating WNT signaling through DKK1 repression. These results reveal a key druggable mechanism for tumor development and identify strategies to restore "hot" tumor immune microenvironments.This article is highlighted in the In This Issue feature, p. 890.
Assuntos
Carcinogênese/genética , Mutação com Ganho de Função/genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Oncogenes/genética , Linhagem Celular Tumoral , Humanos , MutaçãoRESUMO
In adult stem cell lineages, progenitor cells commonly undergo mitotic transit amplifying (TA) divisions before terminal differentiation, allowing production of many differentiated progeny per stem cell division. Mechanisms that limit TA divisions and trigger the switch to differentiation may protect against cancer by preventing accumulation of oncogenic mutations in the proliferating population. Here we show that the switch from TA proliferation to differentiation in the Drosophila male germline stem cell lineage is mediated by translational control. The TRIM-NHL tumor suppressor homolog Mei-P26 facilitates accumulation of the differentiation regulator Bam in TA cells. In turn, Bam and its partner Bgcn bind the mei-P26 3' untranslated region and repress translation of mei-P26 in late TA cells. Thus, germ cells progress through distinct, sequential regulatory states, from Mei-P26 on/Bam off to Bam on/Mei-P26 off. TRIM-NHL homologs across species facilitate the switch from proliferation to differentiation, suggesting a conserved developmentally programmed tumor suppressor mechanism.
Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Linhagem da Célula , Drosophila/citologia , Regulação da Expressão Gênica , Células-Tronco Adultas/metabolismo , Animais , Divisão Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , MasculinoRESUMO
A key feature of many adult stem cell lineages is that stem cell daughters destined for differentiation undergo several transit amplifying (TA) divisions before initiating terminal differentiation, allowing few and infrequently dividing stem cells to produce many differentiated progeny. Although the number of progenitor divisions profoundly affects tissue (re)generation, and failure to control these divisions may contribute to cancer, the mechanisms that limit TA proliferation are not well understood. Here, we use a model stem cell lineage, the Drosophila male germ line, to investigate the mechanism that counts the number of TA divisions. The Drosophila Bag of Marbles (Bam) protein is required for male germ cells to cease spermatogonial TA divisions and initiate spermatocyte differentiation [McKearin DM, et al. (1990) Genes Dev 4:2242-2251]. Contrary to models involving dilution of a differentiation repressor, our results suggest that the switch from proliferation to terminal differentiation is triggered by accumulation of Bam protein to a critical threshold in TA cells and that the number of TA divisions is set by the timing of Bam accumulation with respect to the rate of cell cycle progression.
Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Divisão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Masculino , Modelos Biológicos , Espermatócitos/citologia , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/citologia , Testículo/metabolismoRESUMO
Disruption of the dopamine (DA) transporter (Dat1) gene in mice leads to a 50% reduction or complete elimination of Dat1 expression in striatum of respective heterozygous (HZ) and knockout (KO) mice. Compared to wild-type (WT) controls, extracellular DA is increased approximately two- and five-fold in the mutants. Although open field (OF) activity is similar for WT and HZ animals, it is enhanced for KO mice. The purpose of the present investigations was to study spontaneously emitted behaviors and to determine the behavioral and neurochemical mechanisms that may contribute to the hyperactivity of KO animals. Heterozygotes are less anxious than other genotypes and they engage in novelty-seeking behaviors that include increased time spent in the center of the OF, enhanced investigation of objects, and augmented free exploration of a novel environment. By comparison, KO mice display neophobia when initially exposed to novel conditions. Over time the anxiety-like response habituates and behaviors become activated and stereotyped; these responses are unrelated to exploration or novelty seeking. No alterations in extracellular DA levels or tissue contents from several brain regions are detected at the time of stereotypic activation of KO mice. By contrast, this behavior is accompanied by changes in serotonin metabolism in basal ganglia. This feature may contribute to the behavioral inflexibility of KO mice in different experimental contexts. Collectively, these findings suggest that disruption of the Dat1 gene in mice leads to two different phenotypes; one related to anxiety-reducing and novelty seeking, while the other has some homology to disorders with a stereotypical-perseverative spectrum.