Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO Mol Med ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750308

RESUMO

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.

2.
J Biomed Sci ; 30(1): 24, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055751

RESUMO

BACKGROUND: Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS: To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS: After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS: Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.


Assuntos
Dengue , Dengue Grave , Humanos , Leucócitos Mononucleares , Estudos Prospectivos , Linfócitos T
3.
Gut Microbes ; 14(1): 2117504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045589

RESUMO

Clostridioides difficile is the most common cause of infectious antibiotic-associated diarrhea, with disease mediated by two major toxins TcdA and TcdB. In severe cases, systemic disease complications may arise, resulting in fatal disease. Systemic disease in animal models has been described, with thymic damage an observable consequence of severe disease in mice. Using a mouse model of C. difficile infection, we examined this disease phenotype, focussing on the thymus and serum markers of systemic disease. The efficacy of bezlotoxumab, a monoclonal TcdB therapeutic, to prevent toxin mediated systemic disease complications was also examined. C. difficile infection causes toxin-dependent thymic damage and CD4+CD8+ thymocyte depletion in mice. These systemic complications coincide with changes in biochemical markers of liver and kidney function, including increased serum urea and creatinine, and hypoglycemia. Administration of bezlotoxumab during C. difficile infection prevents systemic disease and thymic atrophy, without blocking gut damage, suggesting the leakage of gut contents into circulation may influence systemic disease. As the thymus has such a crucial role in T cell production and immune system development, these findings may have important implications in relapse of C. difficile disease and impaired immunity during C. difficile infection. The prevention of thymic atrophy and reduced systemic response following bezlotoxumab treatment, without altering colonic damage, highlights the importance of systemic disease in C. difficile infection, and provides new insights into the mechanism of action for this therapeutic.Abbreviations: Acute kidney injury (AKI); Alanine Transaminase (ALT); Aspartate Aminotransferase (AST); C. difficile infection (CDI); chronic kidney disease (CKD); combined repetitive oligo-peptides (CROPS); cardiovascular disease (CVD); Double positive (DP); hematoxylin and eosin (H&E); immunohistochemical (IHC); multiple organ dysfunction syndrome (MODS); phosphate buffered saline (PBS); standard error of the mean (SEM); surface layer proteins (SLP); Single positive (SP); wild-type (WT).


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Anticorpos Monoclonais , Atrofia , Proteínas de Bactérias/genética , Toxinas Bacterianas/metabolismo , Anticorpos Amplamente Neutralizantes , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle , Enterotoxinas/metabolismo
4.
Mol Biochem Parasitol ; 250: 111487, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605814

RESUMO

The Malaria in Melbourne 2021 conference was held online in October. This conference aims to provide a platform for students and early career researchers to share their research and develop new collaborative networks. The program covered a broad range of topics including antimalarial drug development, epidemiology, immunology, molecular and cellular biology, and other emerging technologies. This article summarises recent advances in Plasmodium research presented at the Malaria in Melbourne 2021 conference.


Assuntos
Antimaláricos , Malária , Plasmodium , Antimaláricos/uso terapêutico , Humanos , Malária/epidemiologia , Plasmodium/genética
5.
STAR Protoc ; 3(2): 101269, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35378884

RESUMO

High-dimensional mass cytometry provides unparalleled insight into the cellular composition of the immune system. Here, we describe a mass-cytometry-based protocol to examine memory CD4+ T cell and memory B cell (MBC) responses in human peripheral blood. This approach allows for the identification of >50 distinct memory CD4+ T cell and MBC populations from a single clinical sample. This highly reproducible protocol has been successfully applied to multiple infectious disease settings to identify correlates of susceptibility or protection from infection. For complete details on the use and execution of this protocol, please refer to Ioannidis et al. (2021).


Assuntos
Células B de Memória , Linfócitos T , Linfócitos T CD4-Positivos , Citometria de Fluxo/métodos , Humanos , Contagem de Linfócitos
6.
Mol Syst Biol ; 18(4): e10824, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35475529

RESUMO

Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.


Assuntos
Malária Falciparum , Parasitemia , Adulto , Infecções Assintomáticas , Antígeno CTLA-4 , Humanos , Terapia de Imunossupressão , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum
7.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34128836

RESUMO

IFN-γ-driven responses to malaria have been shown to modulate the development and function of T follicular helper (TFH) cells and memory B cells (MBCs), with conflicting evidence of their involvement in the induction of antibody responses required to achieve clinical immunity and their association with disease outcomes. Using high-dimensional single-cell mass cytometry, we identified distinct populations of TH1-polarized CD4+ T cells and MBCs expressing the TH1-defining transcription factor T-bet, associated with either increased or reduced risk of Plasmodium vivax (P. vivax) malaria, demonstrating that inflammatory responses to malaria are not universally detrimental for infection. Furthermore, we found that, whereas class-switched but not IgM+ MBCs were associated with a reduced risk of symptomatic malaria, populations of TH1 cells with a stem central memory phenotype, TH17 cells, and T regulatory cells were associated with protection from asymptomatic infection, suggesting that activation of cell-mediated immunity might also be required to control persistent P. vivax infection with low parasite burden.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Malária Vivax/imunologia , Células B de Memória/imunologia , Infecção Persistente/imunologia , Plasmodium vivax/imunologia , Antimaláricos/uso terapêutico , Infecções Assintomáticas , Linfócitos T CD4-Positivos/metabolismo , Estudos Transversais , Voluntários Saudáveis , Humanos , Imunidade Celular , Imunofenotipagem/métodos , Indonésia , Malária Vivax/sangue , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Células B de Memória/metabolismo , Infecção Persistente/sangue , Infecção Persistente/parasitologia , Plasmodium vivax/isolamento & purificação
8.
Front Immunol ; 11: 582358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154754

RESUMO

γδ T cells play an essential role in the immune response to many pathogens, including Plasmodium. However, long-lasting effects of infection on the γδ T cell population still remain inadequately understood. This study focused on assessing molecular and functional changes that persist in the γδ T cell population following resolution of malaria infection. We investigated transcriptional changes and memory-like functional capacity of malaria pre-exposed γδ T cells using a Plasmodiumchabaudi infection model. We show that multiple genes associated with effector function (chemokines, cytokines and cytotoxicity) and antigen-presentation were upregulated in P. chabaudi-exposed γδ T cells compared to γδ T cells from naïve mice. This transcriptional profile was positively correlated with profiles observed in conventional memory CD8+ T cells and was accompanied by enhanced reactivation upon secondary encounter with Plasmodium-infected red blood cells in vitro. Collectively our data demonstrate that Plasmodium exposure result in "memory-like imprints" in the γδ T cell population and also promotes γδ T cells that can support antigen-presentation during subsequent infections.


Assuntos
Malária/imunologia , Plasmodium chabaudi/fisiologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
9.
Parasitology ; 147(9): 994-998, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32279662

RESUMO

Emerging evidence started to delineate multiple layers of memory B cells, with distinct effector functions during recall responses. Whereas most studies examining long-lived memory B cell responses have focussed on the IgG+ memory B cell compartment, IgM+ memory B cells have only recently started to receive attention. It has been proposed that unlike IgG+ memory B cells, which differentiate into antibody-secreting plasma cells upon antigen re-encounter, IgM+ memory B cells might have the additional capacity to establish secondary germinal centre (GC) responses. The precise function of IgM+ memory B cells in the humoral immune response to malaria has not been fully defined. Using a murine model of severe malaria infection and adoptive transfer strategies we found that IgM+ memory B cells induced in responses to P. berghei ANKA readily proliferate upon re-infection and adopt a GC B cell-like phenotype. The results suggest that that IgM+ memory B cells might play an important role in populating secondary GCs after re-infection with Plasmodium, thereby initiating the induction of B cell clones with enhanced affinity for antigen, at faster rates than naive B cells.


Assuntos
Linfócitos B/imunologia , Coinfecção/parasitologia , Centro Germinativo/parasitologia , Imunoglobulina M/imunologia , Plasmodium berghei/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
10.
Parasitology ; 147(4): 465-470, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31831089

RESUMO

The CXCR3 chemokine CXCL10 or IFN-γ inducible protein 10 (IP-10) has been identified as an important biomarker of cerebral malaria (CM) mortality in children. Studies in mouse malaria infection models have shown that CXCL10 blockade alleviates brain intravascular inflammation and protects infected mice from CM. Despite the key role that CXCL10 plays in the development of CM, the leucocytic sources of CXCL10 in response to human malaria are not known. Here we investigated CXCL10 responses to Plasmodium falciparum in peripheral blood mononuclear cells (PBMCs). We found that PBMCs from malaria-unexposed donors produce CXCL10 in response to P. falciparum and that this response is IFN-γ-dependent. Moreover, CD14+ monocytes were identified as the main leucocytic sources of CXCL10 in peripheral blood, suggesting an important role for innate immune responses in the activation of this pathway involved in the development of symptomatic malaria.


Assuntos
Quimiocina CXCL10/metabolismo , Eritrócitos/imunologia , Interferon gama/metabolismo , Monócitos/imunologia , Plasmodium falciparum/fisiologia , Eritrócitos/parasitologia , Humanos
11.
Cell Rep ; 29(8): 2257-2269.e6, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747599

RESUMO

Despite the key role that antibodies play in protection, the cellular processes mediating the acquisition of humoral immunity against malaria are not fully understood. Using an infection model of severe malaria, we find that germinal center (GC) B cells upregulate the transcription factor T-bet during infection. Molecular and cellular analyses reveal that T-bet in B cells is required not only for IgG2c switching but also favors commitment of B cells to the dark zone of the GC. T-bet was found to regulate the expression of Rgs13 and CXCR3, both of which contribute to the impaired GC polarization observed in the absence of T-bet, resulting in reduced IghV gene mutations and lower antibody avidity. These results demonstrate that T-bet modulates GC dynamics, thereby promoting the differentiation of B cells with increased affinity for antigen.


Assuntos
Linfócitos B/metabolismo , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Malária/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/fisiologia , Malária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteínas com Domínio T/genética
12.
BMC Med ; 15(1): 114, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28615061

RESUMO

BACKGROUND: γδ T cells are important for both protective immunity and immunopathogenesis during malaria infection. However, the immunological processes determining beneficial or detrimental effects on disease outcome remain elusive. The aim of this study was to examine expression and regulatory effect of the inhibitory receptor T-cell immunoglobulin domain and mucin domain 3 (TIM3) on γδ T cells. While TIM3 expression and function on conventional αß T cells have been clearly defined, the equivalent characterization on γδ T cells and associations with disease outcomes is limited. This study investigated the functional capacity of TIM3+ γδ T cells and the underlying mechanisms contributing to TIM3 upregulation and established an association with malaria disease outcomes. METHODS: We analyzed TIM3 expression on γδ T cells in 132 children aged 5-10 years living in malaria endemic areas of Papua New Guinea. TIM3 upregulation and effector functions of TIM3+ γδ T cells were assessed following in vitro stimulation with parasite-infected erythrocytes, phosphoantigen and/or cytokines. Associations between the proportion of TIM3-expressing cells and the molecular force of infection were tested using negative binomial regression and in a Cox proportional hazards model for time to first clinical episode. Multivariable analyses to determine the association of TIM3 and IL-18 levels were conducted using general linear models. Malaria infection mouse models were utilized to experimentally investigate the relationship between repeated exposure and TIM3 upregulation. RESULTS: This study demonstrates that even in the absence of an active malaria infection, children of malaria endemic areas have an atypical population of TIM3-expressing γδ T cells (mean frequency TIM3+ of total γδ T cells 15.2% ± 12). Crucial factors required for γδ T cell TIM3 upregulation include IL-12/IL-18, and plasma IL-18 was associated with TIM3 expression (P = 0.002). Additionally, we show a relationship between TIM3 expression and infection with distinct parasite clones during repeated exposure. TIM3+ γδ T cells were functionally impaired and were associated with asymptomatic malaria infection (hazard ratio 0.54, P = 0.032). CONCLUSIONS: Collectively our data demonstrate a novel role for IL-12/IL-18 in shaping the innate immune response and provide fundamental insight into aspects of γδ T cell immunoregulation. Furthermore, we show that TIM3 represents an important γδ T cell regulatory component involved in minimizing malaria symptoms.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/fisiologia , Interleucina-12/fisiologia , Interleucina-18/fisiologia , Malária/imunologia , Linfócitos T/imunologia , Animais , Criança , Pré-Escolar , Citocinas , Eritrócitos , Humanos , Interleucina-12/sangue , Interleucina-18/sangue , Camundongos , Papua Nova Guiné , Receptores de Antígenos de Linfócitos T gama-delta , Risco
13.
Int J Parasitol ; 47(2-3): 105-110, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27866903

RESUMO

Antibody responses to malaria and candidate malaria vaccines are short-lived in children, leaving them susceptible to repeated malaria episodes. Because T follicular helper (TFH) cells provide critical help to B cells to generate long-lived antibody responses, they have become the focus of recent studies of Plasmodium-infected mice and humans. The emerging data converge on common themes, namely, that malaria-induced TH1 cytokines are associated with the activation of (i) T-like memory TFH cells with impaired B cell helper function, and (ii) pre-TFH cells that acquire Th1-like features (T-bet expression, IFN-γ production), which impede their differentiation into fully functional TFH cells, thus resulting in germinal center dysfunction and suboptimal antibody responses. Deeper knowledge of TFH cells in malaria could illuminate strategies to improve vaccines through modulating TFH cell responses. This review summarizes emerging concepts in TFH cell responses to malaria.


Assuntos
Malária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Citocinas/metabolismo , Centro Germinativo/citologia , Humanos
14.
J Immunol ; 196(3): 1227-38, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718341

RESUMO

CXCL10, or IFN-γ-inducible protein 10, is a biomarker associated with increased risk for Plasmodium falciparum-mediated cerebral malaria (CM). Consistent with this, we have previously shown that CXCL10 neutralization or genetic deletion alleviates brain intravascular inflammation and protects Plasmodium berghei ANKA-infected mice from CM. In addition to organ-specific effects, the absence of CXCL10 during infection was also found to reduce parasite biomass. To identify the cellular sources of CXCL10 responsible for these processes, we irradiated and reconstituted wild-type (WT) and CXCL10(-/-) mice with bone marrow from either WT or CXCL10(-/-) mice. Similar to CXCL10(-/-) mice, chimeras unable to express CXCL10 in hematopoietic-derived cells controlled infection more efficiently than WT controls. In contrast, expression of CXCL10 in knockout mice reconstituted with WT bone marrow resulted in high parasite biomass levels, higher brain parasite and leukocyte sequestration rates, and increased susceptibility to CM. Neutrophils and inflammatory monocytes were identified as the main cellular sources of CXCL10 responsible for the induction of these processes. The improved control of parasitemia observed in the absence of CXCL10-mediated trafficking was associated with a preferential accumulation of CXCR3(+)CD4(+) T follicular helper cells in the spleen and enhanced Ab responses to infection. These results are consistent with the notion that some inflammatory responses elicited in response to malaria infection contribute to the development of high parasite densities involved in the induction of severe disease in target organs.


Assuntos
Quimiocina CXCL10/imunologia , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Parasitemia/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
PLoS One ; 9(4): e93268, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691125

RESUMO

BACKGROUND: The Natural Killer Complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic and allelic variability of various NKC loci has been demonstrated in inbred mice, providing evidence for NKC haplotypes. Using BALB.B6-Cmv1r congenic mice, in which NKC genes from C57BL/6 mice were introduced into the BALB/c background, we have previously shown that the NKC is a genetic determinant of malarial pathogenesis. C57BL/6 alleles are associated with increased disease-susceptibility as BALB.B6-Cmv1r congenic mice had increased cerebral pathology and death rates during P. berghei ANKA infection than cerebral malaria-resistant BALB/c controls. METHODS: To investigate which regions of the NKC are involved in susceptibility to experimental cerebral malaria (ECM), intra-NKC congenic mice generated by backcrossing recombinant F2 progeny from a (BALB/c x BALB.B6-Cmv1r) F1 intercross to BALB/c mice were infected with P. berghei ANKA. RESULTS: Our results revealed that C57BL/6 alleles at two locations in the NKC contribute to the development of ECM. The increased severity to severe disease in intra-NKC congenic mice was not associated with higher parasite burdens but correlated with a significantly enhanced systemic IFN-γ response to infection and an increased recruitment of CD8+ T cells to the brain of infected animals. CONCLUSIONS: Polymorphisms within the NKC modulate malarial pathogenesis and acquired immune responses to infection.


Assuntos
Loci Gênicos , Lectinas Tipo C/genética , Malária Cerebral/genética , Receptores de Superfície Celular/genética , Alelos , Animais , Biomarcadores , Modelos Animais de Doenças , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Parasitology ; 141(5): 602-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24476686

RESUMO

Plasmodium falciparum malaria is responsible for over 250 million clinical cases every year worldwide. Severe malaria cases might present with a range of disease syndromes including acute respiratory distress, metabolic acidosis, hypoglycaemia, renal failure, anaemia, pulmonary oedema, cerebral malaria (CM) and placental malaria (PM) in pregnant women. Two main determinants of severe malaria have been identified: sequestration of parasitized red blood cells and strong pro-inflammatory responses. Increasing evidence from human studies and malaria infection animal models revealed the presence of host leucocytes at the site of parasite sequestration in brain blood vessels as well as placental tissue in complicated malaria cases. These observations suggested that apart from secreting cytokines, leucocytes might also contribute to disease by migrating to the site of parasite sequestration thereby exacerbating organ-specific inflammation. This evidence attracted substantial interest in identifying trafficking pathways by which inflammatory leucocytes are recruited to target organs during severe malaria syndromes. Chemo-attractant cytokines or chemokines are the key regulators of leucocyte trafficking and their potential contribution to disease has recently received considerable attention. This review summarizes the main findings to date, investigating the role of chemokines in severe malaria and the implication of these responses for the induction of pathogenesis and immunity to infection.


Assuntos
Quimiocinas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Receptores de Quimiocinas/imunologia , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade
17.
J Vis Exp ; (71)2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23329000

RESUMO

We describe a method for isolation and characterization of adherent inflammatory cells from brain blood vessels of P. berghei ANKA-infected mice. Infection of susceptible mouse-strains with this parasite strain results in the induction of experimental cerebral malaria, a neurologic syndrome that recapitulates certain important aspects of Plasmodium falciparum-mediated severe malaria in humans. Mature forms of blood-stage malaria express parasitic proteins on the surface of the infected erythrocyte, which allows them to bind to vascular endothelial cells. This process induces obstructions in blood flow, resulting in hypoxia and haemorrhages and also stimulates the recruitment of inflammatory leukocytes to the site of parasite sequestration. Unlike other infections, i.e neutrotopic viruses, both malaria-parasitized red blood cells (pRBC) as well as associated inflammatory leukocytes remain sequestered within blood vessels rather than infiltrating the brain parenchyma. Thus to avoid contamination of sequestered leukocytes with non-inflammatory circulating cells, extensive intracardial perfusion of infected-mice prior to organ extraction and tissue processing is required in this procedure to remove the blood compartment. After perfusion, brains are harvested and dissected in small pieces. The tissue structure is further disrupted by enzymatic treatment with Collagenase D and DNAse I. The resulting brain homogenate is then centrifuged on a Percoll gradient that allows separation of brain-sequestered leukocytes (BSL) from myelin and other tissue debris. Isolated cells are then washed, counted using a hemocytometer and stained with fluorescent antibodies for subsequent analysis by flow cytometry. This procedure allows comprehensive phenotypic characterization of inflammatory leukocytes migrating to the brain in response to various stimuli, including stroke as well as viral or parasitic infections. The method also provides a useful tool for assessment of novel anti-inflammatory treatments in pre-clinical animal models.


Assuntos
Barreira Hematoencefálica/patologia , Encéfalo/cirurgia , Leucócitos/patologia , Malária/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Química Encefálica , Movimento Celular/fisiologia , Modelos Animais de Doenças , Malária/sangue , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium berghei/isolamento & purificação
18.
J Virol ; 86(10): 5922-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22419813

RESUMO

The interaction between influenza virus and dendritic cells (DCs) remains poorly defined and controversial. Here we show that influenza virus replication in mouse bone marrow-derived DCs is abortive, despite viral genome transcription and replication occurring for each gene segment and viral hemagglutinin and nucleoprotein, at least, being produced. Electron microscopy reveals that virus assembly, rather than release of virus from the cell surface, is defective.


Assuntos
Células Dendríticas/virologia , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Replicação Viral , Animais , Células Cultivadas , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/genética , Influenza Humana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Liberação de Vírus
19.
PLoS One ; 6(3): e17618, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21423798

RESUMO

Neutrophils have been implicated in both protective and pathological responses following influenza virus infections. We have used mAb 1A8 (anti-Ly6G) to specifically deplete LyG6(high) neutrophils and induce neutropenia in mice infected with virus strains known to differ in virulence. Mice were also treated with mAb RB6-8C5 (anti-Ly6C/G or anti-Gr-1), a mAb widely used to investigate the role of neutrophils in mice that has been shown to bind and deplete additional leukocyte subsets. Using mAb 1A8, we confirm the beneficial role of neutrophils in mice infected with virus strains of intermediate (HKx31; H3N2) or high (PR8; H1N1) virulence whereas treatment of mice infected with an avirulent strain (BJx109; H3N2) did not affect disease or virus replication. Treatment of BJx109-infected mice with mAb RB6-8C5 was, however, associated with significant weight loss and enhanced virus replication indicating that other Gr-1(+) cells, not neutrophils, limit disease severity during mild influenza infections.


Assuntos
Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/fisiologia , Administração Intranasal , Animais , Anticorpos Monoclonais/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/virologia , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/prevenção & controle , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Virulência/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA