Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11475, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108493

RESUMO

Skillful sea-ice prediction in the Antarctic Ocean remains a big challenge due to paucity of sea-ice observations and insufficient representation of sea-ice processes in climate models. Using a coupled general circulation model, this study demonstrates skillful prediction of the summertime sea-ice concentration (SIC) in the Weddell Sea with wintertime SIC and sea-ice thickness (SIT) initializations. During low sea-ice years of the Weddell Sea, negative SIT anomalies initialized in June retain the memory throughout austral winter owing to horizontal advection of the SIT anomalies. The SIT anomalies continue to develop in austral spring owing to more incoming solar radiation and the associated warming of mixed layer, contributing to further sea-ice decrease during late austral summer-early autumn. Concomitantly, the model reasonably reproduces atmospheric circulation anomalies during austral spring in the Amundsen-Bellingshausen Seas besides the Weddell Sea. These results provide evidence that the wintertime SIT initialization benefits skillful summertime sea-ice prediction in the Antarctic Seas.

2.
Sci Rep ; 10(1): 14444, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879412

RESUMO

Impact studies of the Atlantic Multidecadal Variability (AMV) on the climate system are severely limited by the lack of sufficiently long observational records. Relying on a model-based approach is therefore mandatory to overcome this limitation. Here, a novel experimental setup, designed in the framework of the CMIP6-endorsed Decadal Climate Prediction Project, is applied to the CMCC climate model to analyse the remote climate impact of the AMV on the Northern Eurasian continent. Model results show that, during Boreal summer, an enhanced warming associated to a positive phase of the AMV, induces a hemispheric-scale wave-train response in the atmospheric circulation, affecting vast portions of Northern Eurasia. The overall AMV-induced response consists in an upper-tropospheric anomalous flows leading to a rainfall increase over Scandinavia and Siberia and to an intensified river runoff by the major Siberian rivers. A strengthening of Eurasian shelves' stratification, broadly consistent with the anomalous river discharge, is found in the proximity of the river mouths during positive-AMV years. Considering that Siberian rivers (Ob', Yenisei and Lena) account for almost half of the Arctic freshwater input provided by terrestrial sources, the implications of these findings for decadal variability and predictability of the Arctic environment are also discussed.

3.
Sci Rep ; 9(1): 19949, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882768

RESUMO

Climate variability and climate change in Eastern Boundary Upwelling Systems (EBUS) affect global marine ecosystems services. We use passive tracers in a global ocean model hindcast at eddy-permitting resolution to diagnose EBUS low-frequency variability over 1958-2015 period. The results highlight the uniqueness of each EBUS in terms of drivers and climate variability. The wind forcing and the thermocline depth, which are potentially competitive or complementary upwelling drivers under climate change, control EBUS low-frequency variability with different contributions. Moreover, Atlantic and Pacific upwelling systems are independent. In the Pacific, the only coherent variability between California and Humboldt Systems is associated with El Niño Southern Oscillation. The remaining low-frequency variance is partially explained by the North and South Pacific expressions of the Meridional Modes. In the Atlantic, coherent variability between Canary and Benguela Systems is associated with upwelling trends, which are not dynamically linked and represent different processes. In the Canary, a negative upwelling trend is connected to the Atlantic Multi-decadal Oscillation, while in the Benguela, a positive upwelling trend is forced by a global sea level pressure trend, which is consistent with the climate response to anthropogenic forcing. The residual variability is forced by localized offshore high sea level pressure variability.

4.
Front Mar Sci ; 6: 391, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31534949

RESUMO

Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network.

5.
Sci Rep ; 9(1): 2457, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30799436

RESUMO

Potential impact of sea-ice initialization on the interannual climate predictability over the Weddell Sea is investigated using a coupled general circulation model. Climate variability in the Weddell Sea is generally believed to have association with remote forcing such as El Niño-Southern Oscillation and the Southern Annual Mode. However, sea-ice variability in the Weddell Sea has been recently suggested to play additional roles in modulating local atmospheric variability through changes in surface air temperature and near-surface baroclinicity. Reforecast experiments from September 1st, in which the model's sea-surface temperature (SST) and sea-ice concentration (SIC) are initialized with observations using nudging schemes, show improvements in predicting the observed SIC anomalies in the Weddell Sea up to four months ahead, compared to the other experiments in which only the model's SST is initialized. During austral spring (Oct-Dec) of lower-than-normal sea-ice years in the Weddell Sea, reforecast experiments with the SST and SIC initializations reasonably predict high surface air temperature anomalies in the Weddell Sea and high sea-level pressure anomalies over the Atlantic sector of the Southern Ocean. These results suggest that accurate initialization of sea-ice conditions during austral winter is necessary for skillful prediction of climate variability over the Weddell Sea during austral spring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA