Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713926

RESUMO

Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.


Assuntos
Compostos Organometálicos , Piridinas , Poluentes Químicos da Água , Piridinas/toxicidade , Compostos Organometálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Medição de Risco , Ecossistema , Monitoramento Ambiental
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531780

RESUMO

Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.


Assuntos
Bivalves , Pectinidae , Animais , Simbiose , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias , Genômica , Bivalves/microbiologia , Pectinidae/genética , Genoma Bacteriano , Filogenia
3.
Mar Pollut Bull ; 199: 116002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181470

RESUMO

Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.


Assuntos
Antozoários , Synechococcus , Animais , Antozoários/microbiologia , Hong Kong , Clima , Recifes de Corais
4.
Sci Data ; 10(1): 381, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316548

RESUMO

Coral reefs are under existential threat from climate change and anthropogenic impacts. Genomic studies have enhanced our knowledge of resilience and responses of some coral species to environmental stress, but reference genomes are lacking for many coral species. The blue coral Heliopora is the only reef-building octocoral genus and exhibits optimal growth at a temperature close to the bleaching threshold of scleractinian corals. Local and high-latitude expansions of Heliopora coerulea were reported in the last decade, but little is known about the molecular mechanisms underlying its thermal resistance. We generated a draft genome of H. coerulea with an assembled size of 429.9 Mb, scaffold N50 of 1.42 Mb and BUSCO completeness of 94.9%. The genome contains 239.1 Mb repetitive sequences, 27,108 protein coding genes, 6,225 lncRNAs, and 79 miRNAs. This reference genome provides a valuable resource for in-depth studies on the adaptive mechanisms of corals under climate change and the evolution of skeleton in cnidarian.


Assuntos
Antozoários , Animais , Antozoários/genética , Efeitos Antropogênicos , Mudança Climática , Recifes de Corais , Existencialismo , Genoma
6.
Zool Res ; 44(1): 106-125, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36419378

RESUMO

Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel ( Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.


Assuntos
Bivalves , Ecossistema , Animais , Bivalves/genética , Bactérias/genética , Simbiose , Carbono/metabolismo
7.
Mar Pollut Bull ; 184: 114224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36240631

RESUMO

Adaptive changes in endosymbiotic Symbiodiniaceae communities have been reported during and after bleaching events in tropical coral species, but little is known about such shifts in subtropical species. Here we examined the Symbiodiniaceae communities in three coral species (Montipora peltiformis, Pavona decussata, and Platygyra carnosa) based on samples collected during and after the 2017 bleaching event in subtropical Hong Kong waters. In all of the collected samples, ITS2 meta-sequencing revealed that P. decussata and P. carnosa were predominantly associated with Cladocopium C1 and C1c, whereas M. peltiformis was mainly associated with two Cladocopium C21 types and C1. For each species, the predominant endosymbionts exhibited high fidelity, and the relatively low abundance ITS2-types showed minor changes between the bleached and recovered corals. Our study provided the first details of coral-algal association in Hong Kong waters, suggesting the selection of certain genotypes as a potential adaptive mechanism to the marginal environmental conditions.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Hong Kong , Simbiose
8.
Mar Pollut Bull ; 182: 114017, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963227

RESUMO

Although coral species exhibit differential susceptibility to stressors, little is known about the underlying molecular mechanisms. Here we compared scleractinian corals Montipora peltiformis and Platygyra carnosa collected during the 2017 El Niño heat wave. Zooxanthellae density and chlorophyll a content declined and increased substantially during and after heat stress event, respective. However, the magnitude of change was larger in M. peltiformis. Transcriptome analysis showed that heat-stressed corals corresponded to metabolic depression and catabolism of amino acids in both hosts which might promote their survival. However, only M. peltiformis has developed the bleached coral phenotype with corresponding strong stress- and immune-related responses in the host and symbiont, and strong suppression of photosynthesis-related genes in the symbiont. Overall, our study reveals differences among species in the homeostatic capacity to prevent the development of the bleached phenotype under environmental stressors, eventually determining their likelihood of survival in the warming ocean.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Clorofila A , Recifes de Corais , El Niño Oscilação Sul , Simbiose , Transcriptoma
9.
Sci Total Environ ; 806(Pt 2): 150656, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597574

RESUMO

Coral bleaching has become a major threat to coral reefs worldwide, but for most coral species little is known about their resilience to environmental changes. We aimed to understand the gene expressional regulation underlying natural bleaching and recovery in Pavona decussata, a dominant species of scleractinian coral in the northern South China Sea. Analyzing samples collected in 2017 from the field revealed distinct zooxanthellae density, chlorophyll a concentration and transcriptomic signatures corresponding to changes in health conditions of the coral holobiont. In the host, normal-looking tissues of partially bleached colonies were frontloaded with stress responsive genes, as indicated by upregulation of immune defense, response to endoplasmic reticulum, and oxidative stress genes. Bleaching was characterized by upregulation of apoptosis-related genes which could cause a reduction in algal symbionts, and downregulation of genes involved in stress responses and metabolic processes. The transcription factors stat5b and irf1 played key roles in bleaching by regulating immune and apoptosis pathways. Recovery from bleaching was characterized by enrichment of pathways involved in mitosis, DNA replication, and recombination for tissue repairing, as well as restoration of energy and metabolism. In the symbionts, bleaching corresponded to imbalance in photosystems I and II activities which enhanced oxidative stress and limited energy production and nutrient assimilation. Overall, our study revealed distinct gene expressional profiles and regulation in the different phases of the bleaching and recovery process, and provided new insight into the molecular mechanisms underlying the holobiont's resilience that may determine the species' fate in response to global and regional environmental changes.


Assuntos
Antozoários , Animais , Antozoários/genética , Clorofila A , Recifes de Corais , Folhas de Planta , Simbiose , Transcriptoma
10.
Mol Biol Evol ; 38(10): 4116-4134, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34255082

RESUMO

Vestimentiferan tubeworms are iconic animals that present as large habitat-forming chitinized tube bushes in deep-sea chemosynthetic ecosystems. They are gutless and depend entirely on their endosymbiotic sulfide-oxidizing chemoautotrophic bacteria for nutrition. Information on the genomes of several siboglinid endosymbionts has improved our understanding of their nutritional supplies. However, the interactions between tubeworms and their endosymbionts remain largely unclear due to a paucity of host genomes. Here, we report the chromosome-level genome of the vestimentiferan tubeworm Paraescarpia echinospica. We found that the genome has been remodeled to facilitate symbiosis through the expansion of gene families related to substrate transfer and innate immunity, suppression of apoptosis, regulation of lysosomal digestion, and protection against oxidative stress. Furthermore, the genome encodes a programmed cell death pathway that potentially controls the endosymbiont population. Our integrated genomic, transcriptomic, and proteomic analyses uncovered matrix proteins required for the formation of the chitinous tube and revealed gene family expansion and co-option as evolutionary mechanisms driving the acquisition of this unique supporting structure for deep-sea tubeworms. Overall, our study provides novel insights into the host's support system that has enabled tubeworms to establish symbiosis, thrive in deep-sea hot vents and cold seeps, and produce the unique chitinous tubes in the deep sea.


Assuntos
Fontes Hidrotermais , Simbiose , Animais , Quitina , Ecossistema , Genômica , Fontes Hidrotermais/microbiologia , Proteômica , Simbiose/genética
11.
Heliyon ; 7(6): e07291, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189321

RESUMO

Members of the infraclass Cirripedia, commonly called barnacles, are unique among the subphylum Crustacea in that they exhibit a biphasic life cycle with a planktonic larval stage and a sessile adult stage. Understanding their unique sessile life and mechanisms of attachment are hampered by the lack of genomic resources. Here, we present a 746 Mb genome assembly of Lepas anserifera - the first sequenced stalked barnacle genome. We estimate that Cirripedia first arose ~495 million years ago (MYA) and further diversified since Mesozoic. A demographic analysis revealed remarkable population changes of the barnacle in relation to sea-level fluctuations in the last 2 MYA. Comparative genomic analyses revealed the expansion of a number of developmental related genes families in barnacle genomes, such as Br-C, PCP20 and Lola, which are potentially important for the evolution of metamorphosis, cuticle development and central nervous system. Phylogenetic analysis and tissue expression profiling showed the possible roles of gene duplication, functional diversification and co-option in shaping the genomic evolution of barnacles. Overall, our study provides not only a valuable draft genome for comparative genomic analysis of crustacean evolution, but also facilitates studies of biofouling control.

12.
Sci Total Environ ; 790: 148040, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091345

RESUMO

Triphenyltin (TPT) is widely used as an active ingredient in antifouling paints and fungicides, and continuous release of this highly toxic endocrine disruptor has caused serious pollution to coastal marine ecosystems and organisms worldwide. Using bioassays and transcriptome sequencing, this study comprehensively investigated the molecular toxicity of TPT chloride (TPTCl) to the marine mussel Perna viridis which is a commercially important species and a common biomonitor for marine pollution in Southeast Asia. Our results indicated that TPTCl was highly toxic to adult P. viridis, with a 96-h LC10 and a 96-h EC10 at 18.7 µg/L and 2.7 µg/L, respectively. A 21-day chronic exposure to 2.7 µg/L TPTCl revealed a strong bioaccumulation of TPT in gills (up to 36.48 µg/g dry weight) and hepatopancreas (71.19 µg/g dry weight) of P. viridis. Transcriptome analysis indicated a time course dependent gene expression pattern in both gills and hepatopancreas. Higher numbers of differentially expressed genes were detected at Day 21 (gills: 1686 genes; hepatopancreas: 1450 genes) and at Day 28 (gills: 628 genes; hepatopancreas: 238 genes) when compared with that at Day 7 (gills: 104 genes, hepatopancreas: 112 genes). Exposure to TPT strongly impaired the endocrine system through targeting on nuclear receptors and putative steroid metabolic genes. Moreover, TPT widely disrupted cellular functions, including lipid metabolism, xenobiotic detoxification, immune response and endoplasmic-reticulum-associated degradation expression, which might have caused the bioaccumulation of TPT in the tissues and aggregation of peptides and proteins in cells that further activated the apoptosis process in P. viridis. Overall, this study has advanced our understanding on both ecotoxicity and molecular toxic mechanisms of TPT to marine mussels, and contributed empirical toxicity data for risk assessment and management of TPT contamination.


Assuntos
Perna (Organismo) , Poluentes Químicos da Água , Animais , Ecossistema , Compostos Orgânicos de Estanho , Perna (Organismo)/genética , Transcriptoma , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Mol Biol Evol ; 38(2): 502-518, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32956455

RESUMO

Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host's high dependence on the symbiont for nutrition. Overall, the host-symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.


Assuntos
Bivalves/microbiologia , Transferência Genética Horizontal , Genoma , Fontes Hidrotermais/microbiologia , Simbiose , Sequência de Aminoácidos , Animais , Bivalves/fisiologia , Hemoglobinas/química , Hemoglobinas/genética , Sistema Imunitário , Filogenia , Piscirickettsiaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA