Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16788-16799, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520339

RESUMO

Smart wearables with the capability for continuous monitoring, perceiving, and understanding human tactile and motion signals, while ensuring comfort, are highly sought after for intelligent healthcare and smart life systems. However, concurrently achieving high-performance tactile sensing, long-lasting wearing comfort, and industrialized fabrication by a low-cost strategy remains a great challenge. This is primarily due to critical research gaps in novel textile structure design for seamless integration with sensing elements. Here, an all-in-one biaxial insertion knit architecture is reported to topologically integrate sensing units within double-knit loops for the fabrication of a large-scale tactile sensing textile by using low-cost industrial manufacturing routes. High sensitivity, stability, and low hysteresis of arrayed sensing units are achieved through engineering of fractal structures of hierarchically patterned piezoresistive yarns via blistering and twisting processing. The as-prepared tactile sensing textiles show desirable sensing performance and robust mechanical property, while ensuring excellent conformability, tailorability, breathability (288 mm s-1), and moisture permeability (3591 g m-2 per day) for minimizing the effect on wearing comfort. The multifunctional applications of tactile sensing textiles are demonstrated in continuously monitoring human motions, tactile interactions with the environment, and recognizing biometric gait. Moreover, we also demonstrate that machine learning-assisted sensing textiles can accurately predict body postures, which holds great promise in advancing the development of personalized healthcare robotics, prosthetics, and intelligent interaction devices.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Têxteis , Movimento (Física) , Tato
2.
Artigo em Inglês | MEDLINE | ID: mdl-35562190

RESUMO

A wearable textile that is engineered to reflect incoming sunlight and allow the transmission of mid-infrared radiation simultaneously would have a great impact on the human body's thermal regulation in an outdoor environment. However, developing such a textile is a tough challenge. Using nanoparticle-doped polymer (zinc oxide and polyethylene) materials and electrospinning technology, we have developed a nanofabric with the desired optical properties and good applicability. The nanofabric offers a cool fibrous structure with outstanding solar reflectivity (91%) and mid-infrared transmissivity (81%). In an outdoor field test under exposure of direct sunlight, the nanofabric was demonstrated to reduce the simulated skin temperature by 9 °C when compared to skin covered by a cotton textile. A heat-transfer model is also established to numerically assess the cooling performance of the nanofabric as a function of various climate factors, including solar intensity, ambient air temperature, atmospheric emission, wind speed, and parasitic heat loss rate. The results indicate that the nanofabric can completely release the human body from unwanted heat stress in most conditions, providing an additional cooling effect as well as demonstrating worldwide feasibility. Even in some extreme conditions, the nanofabric can also reduce the human body's cooling demand compared with traditional cotton textile, proving this material as a feasible solution for better thermoregulation of the human body. The facile fabrication of such textiles paves the way for the mass adoption of energy-free personal cooling technology in daily life, which meets the growing demand for healthcare, climate change, and sustainability.

3.
Adv Mater ; 34(17): e2107938, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34969155

RESUMO

Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.


Assuntos
Nanofibras , Antibacterianos , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nanofibras/química
4.
ACS Appl Mater Interfaces ; 13(45): 54386-54395, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747178

RESUMO

Fiber-based artificial muscles with excellent actuation performance are gaining great attention as soft materials for flexible actuators; however, current advances in fiber-based artificial muscles generally suffer from high cost, harsh stimulation regimes, limiting deformations, chemical toxicity, or complex manufacturing processing, which hinder the widespread application of those artificial muscles in engineering and practical usage. Herein, a facile cross-scale processing strategy is presented to construct commercially available nontoxic viscose fibers into fast responsive and humidity-driven yarn artificial muscles with a recorded torsional stroke of 1752° cm-1 and a maximum rotation speed up to 2100 rpm, which are comparable to certain artificial muscles made from carbon-based composite materials. The underlying mechanism of such outstanding actuation performance that begins to form at a mesoscale is discussed by theoretical modeling and microstructure characterization. The as-prepared yarn artificial muscles are further scaled up to large-sized fabric muscles through topological weaving structures by integrating different textile technologies. These fabric muscles extend the simple motion of yarn muscles into higher-level diverse deformations without any composite system, complex synthetic processing, and component design, which enables the development of new fiber-based artificial muscles for versatile applications, such as smart textiles and intelligent systems.


Assuntos
Materiais Biomiméticos/química , Músculos/química , Robótica , Têxteis , Materiais Biomiméticos/síntese química , Humanos , Tamanho da Partícula
5.
Adv Mater ; 33(32): e2101005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219279

RESUMO

Coronary artery disease is the "first killer" in the world, while the classical treatment for this disease is to implant stent. An ideal vascular stent should be nontoxic with self-expanding characteristics, quick expanding speed, and appropriate mechanical supporting property. However, no existing vascular stent covers all properties. Herein, a two-way shape-memory cellulose vascular stent, which can realize shape adjustments by mild solutions such as water and alcohol, is constructed. The shape-memory characteristics, mechanical properties, cell toxicity, and biocompatibility, are systemically investigated by ex vivo experiment as well as molecule simulation and theoretical modeling, revealing that the achieved bilayer two-way shape-memory films (BSMFs) can be used as an artificial vascular stent. In particular, this vascular stent made from BSMFs shows superb biocompatibility according to live/dead cell viability assays. Ex vivo experiments reveal that the novel vascular stent can support arteria coronaria sinistra, or the left main coronary artery, at the opening state while the cross-section of the vessel becomes two times larger than that of the initial state after implantation. Thus, it is believed that effective and scalable BSMFs can make meritorious fundamental contributions to biomaterials science and practical applications such as vascular stents.


Assuntos
Materiais Biocompatíveis/química , Solventes/química , Stents , Animais , Materiais Biocompatíveis/farmacologia , Temperatura Corporal , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Artéria Pulmonar/patologia , Suínos
6.
ACS Appl Mater Interfaces ; 13(5): 6298-6308, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502157

RESUMO

Personalized thermal management using water-actuated woolen knitwear has great potential for smart textile production. However, woolen knitwear exists in a wide range of forms with different derivatives. Manufacturing of smart woolen structures with excellent cooling properties is linked to certain parameters such as changes in loop formation, loop shape, and yarn arrangement upon stimulation of body fluids. To address this issue, textile knit structures with different physical and mechanical properties have been prepared using water-responsive descaled wool fibers and their smart heat and moisture regulation behavior have been investigated and compared to detect the fabric architectural effect on water actuation and cooling performance of woolen garments. The evidence suggests that the technical structure of the fabrics plays a crucial role in pore actuation and fabric cooling performance. The water actuation and thermal management abilities of single jersey were greatly enhanced because of unbalanced structures with lower mechanical stress among the loops and yarns. The experimental data is also in line with the theoretical analysis. Hence, the unbalanced structures control fast heat and mass transfer from the human body, which may offer a promising year-round clothing material to the wearer. This material can have a similar response upon contact with body sweat and humid environments and hence can act as a skinlike fabric. Their possible applications can lie in different fields, such as thermoregulation, functional clothing, sportswear, and medical care.


Assuntos
Temperatura Alta , Sensação Térmica , Fibra de Lã , Humanos , Tamanho da Partícula , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA