Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8029): 389-397, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261618

RESUMO

Rapa Nui (also known as Easter Island) is one of the most isolated inhabited places in the world. It has captured the imagination of many owing to its archaeological record, which includes iconic megalithic statues called moai1. Two prominent contentions have arisen from the extensive study of Rapa Nui. First, the history of the Rapanui has been presented as a warning tale of resource overexploitation that would have culminated in a major population collapse-the 'ecocide' theory2-4. Second, the possibility of trans-Pacific voyages to the Americas pre-dating European contact is still debated5-7. Here, to address these questions, we reconstructed the genomic history of the Rapanui on the basis of 15 ancient Rapanui individuals that we radiocarbon dated (1670-1950 CE) and whole-genome sequenced (0.4-25.6×). We find that these individuals are Polynesian in origin and most closely related to present-day Rapanui, a finding that will contribute to repatriation efforts. Through effective population size reconstructions and extensive population genetics simulations, we reject a scenario involving a severe population bottleneck during the 1600s, as proposed by the ecocide theory. Furthermore, the ancient and present-day Rapanui carry similar proportions of Native American admixture (about 10%). Using a Bayesian approach integrating genetic and radiocarbon dates, we estimate that this admixture event occurred about 1250-1430 CE.


Assuntos
Indígena Americano ou Nativo do Alasca , DNA Antigo , População Europeia , Genética Populacional , Genoma Humano , Migração Humana , Havaiano Nativo ou Outro Ilhéu do Pacífico , Feminino , Humanos , Masculino , Indígena Americano ou Nativo do Alasca/genética , Indígena Americano ou Nativo do Alasca/história , América/etnologia , Teorema de Bayes , DNA Antigo/análise , Europa (Continente)/etnologia , População Europeia/genética , População Europeia/história , Genoma Humano/genética , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , História Medieval , Migração Humana/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/história , Filogenia , Polinésia/etnologia , Densidade Demográfica , Datação Radiométrica , Sequenciamento Completo do Genoma
2.
Curr Biol ; 32(21): 4743-4751.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36182700

RESUMO

Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.


Assuntos
Peste , Humanos , Peste/epidemiologia , Peste/genética , Pandemias/história , Metagenômica , Genoma Bacteriano , Filogenia
3.
Science ; 369(6502): 456-460, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32499399

RESUMO

The Caribbean was one of the last regions of the Americas to be settled by humans, but where they came from and how and when they reached the islands remain unclear. We generated genome-wide data for 93 ancient Caribbean islanders dating between 3200 and 400 calibrated years before the present and found evidence of at least three separate dispersals into the region, including two early dispersals into the Western Caribbean, one of which seems connected to radiation events in North America. This was followed by a later expansion from South America. We also detected genetic differences between the early settlers and the newcomers from South America, with almost no evidence of admixture. Our results add to our understanding of the initial peopling of the Caribbean and the movements of Archaic Age peoples in the Americas.


Assuntos
Genética Populacional , Migração Humana , Região do Caribe , Etnicidade/genética , Genômica , Humanos
4.
Science ; 362(6419)2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30409807

RESUMO

Studies of the peopling of the Americas have focused on the timing and number of initial migrations. Less attention has been paid to the subsequent spread of people within the Americas. We sequenced 15 ancient human genomes spanning from Alaska to Patagonia; six are ≥10,000 years old (up to ~18× coverage). All are most closely related to Native Americans, including those from an Ancient Beringian individual and two morphologically distinct "Paleoamericans." We found evidence of rapid dispersal and early diversification that included previously unknown groups as people moved south. This resulted in multiple independent, geographically uneven migrations, including one that provides clues of a Late Pleistocene Australasian genetic signal, as well as a later Mesoamerican-related expansion. These led to complex and dynamic population histories from North to South America.


Assuntos
Genoma Humano , Migração Humana , Indígenas Norte-Americanos/genética , Conjuntos de Dados como Assunto , Ásia Oriental/etnologia , Genômica , Humanos , América do Norte , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Sibéria/etnologia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA