Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746185

RESUMO

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

2.
S Afr J Infect Dis ; 38(1): 550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38223432

RESUMO

Background: The emergence of genetic variants of SARS-CoV-2 was associated with changing epidemiological characteristics throughout coronavirus disease 2019 (COVID-19) pandemic in population-based studies. Individual-level data on the clinical characteristics of infection with different SARS-CoV-2 variants in African countries is less well documented. Objectives: To describe the evolving clinical differences observed with the various SARS-CoV-2 variants of concern and compare the Omicron-driven wave in infections to the previous Delta-driven wave. Method: We performed a retrospective observational cohort study among patients admitted to a South African referral hospital with COVID-19 pneumonia. Patients were stratified by epidemiological wave period, and in a subset, the variants associated with each wave were confirmed by genomic sequencing. Outcomes were analysed by Cox proportional hazard models. Results: We included 1689 patients were included, representing infection waves driven predominantly by ancestral, Beta, Delta and Omicron BA1/BA2 & BA4/BA5 variants. Crude 28-day mortality was 25.8% (34/133) in the Omicron wave period versus 37.1% (138/374) in the Delta wave period (hazard ratio [HR] 0.68 [95% CI 0.47-1.00] p = 0.049); this effect persisted after adjustment for age, gender, HIV status and presence of cardiovascular disease (adjusted HR [aHR] 0.43 [95% CI 0.28-0.67] p < 0.001). Hospital-wide SARS-CoV-2 admissions and deaths were highest during the Delta wave period, with a decoupling of SARS-CoV-2 deaths and overall deaths thereafter. Conclusion: There was lower in-hospital mortality during Omicron-driven waves compared with the prior Delta wave, despite patients admitted during the Omicron wave being at higher risk. Contribution: This study summarises clinical characteristics associated with SARS-CoV-2 variants during the COVID-19 pandemic at a South African tertiary hospital, demonstrating a waning impact of COVID-19 on healthcare services over time despite epidemic waves driven by new variants. Findings suggest the absence of increasing virulence from later variants and protection from population and individual-level immunity.

3.
Viruses ; 14(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36560718

RESUMO

The unprecedented growth of publicly available SARS-CoV-2 genome sequence data has increased the demand for effective and accessible SARS-CoV-2 data analysis and visualization tools. The majority of the currently available tools either require computational expertise to deploy them or limit user input to preselected subsets of SARS-CoV-2 genomes. To address these limitations, we developed ViralVar, a publicly available, point-and-click webtool that gives users the freedom to investigate and visualize user-selected subsets of SARS-CoV-2 genomes obtained from the GISAID public database. ViralVar has two primary features that enable: (1) the visualization of the spatiotemporal dynamics of SARS-CoV-2 lineages and (2) a structural/functional analysis of genomic mutations. As proof-of-principle, ViralVar was used to explore the evolution of the SARS-CoV-2 pandemic in the USA in pediatric, adult, and elderly populations (n > 1.7 million genomes). Whereas the spatiotemporal dynamics of the variants did not differ between these age groups, several USA-specific sublineages arose relative to the rest of the world. Our development and utilization of ViralVar to provide insights on the evolution of SARS-CoV-2 in the USA demonstrates the importance of developing accessible tools to facilitate and accelerate the large-scale surveillance of circulating pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , Idoso , SARS-CoV-2/genética , COVID-19/genética , Genoma Viral , Mutação , Filogenia
4.
Microbiome ; 10(1): 141, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045402

RESUMO

BACKGROUND: Women with a cervicovaginal microbiota dominated by Lactobacillus spp. are at reduced risk of acquiring sexually transmitted infections including HIV, but the biological mechanisms involved remain poorly defined. Here, we performed metaproteomics on vaginal swab samples from young South African women (n = 113) and transcriptomics analysis of cervicovaginal epithelial cell cultures to examine the ability of lactic acid, a metabolite produced by cervicovaginal lactobacilli, to modulate genital epithelial barrier function. RESULTS: Compared to women with Lactobacillus-depleted microbiota, women dominated by vaginal lactobacilli exhibit higher abundance of bacterial lactate dehydrogenase, a key enzyme responsible for lactic acid production, which is independently associated with an increased abundance of epithelial barrier proteins. Physiological concentrations of lactic acid enhance epithelial cell culture barrier integrity and increase intercellular junctional molecule expression. CONCLUSIONS: These findings reveal a novel ability of vaginal lactic acid to enhance genital epithelial barrier integrity that may help prevent invasion by sexually transmitted pathogens. Video abstract.


Assuntos
Ácido Láctico , Microbiota , Vagina , Epitélio , Feminino , Humanos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Microbiota/fisiologia , Proteínas de Junções Íntimas/metabolismo , Vagina/metabolismo , Vagina/microbiologia
5.
Front Genet ; 13: 875406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719386

RESUMO

Most attention in the surveillance of evolving SARS-CoV-2 genome has been centered on nucleotide substitutions in the spike glycoprotein. We show that, as the pandemic extends into its second year, the numbers and ratio of genomes with in-frame insertions and deletions (indels) increases significantly, especially among the variants of concern (VOCs). Monitoring of the SARS-CoV-2 genome evolution shows that co-occurrence (i.e., highly correlated presence) of indels, especially deletions on spike N-terminal domain and non-structural protein 6 (NSP6) is a shared feature in several VOCs such as Alpha, Beta, Delta, and Omicron. Indels distribution is correlated with spike mutations associated with immune escape and growth in the number of genomes with indels coincides with the increasing population resistance due to vaccination and previous infections. Indels occur most frequently in the spike, but also in other proteins, especially those involved in interactions with the host immune system. We also showed that indels concentrate in regions of individual SARS-CoV-2 proteins known as hypervariable regions (HVRs) that are mostly located in specific loop regions. Structural analysis suggests that indels remodel viral proteins' surfaces at common epitopes and interaction interfaces, affecting the virus' interactions with host proteins. We hypothesize that the increased frequency of indels, the non-random distribution of them and their independent co-occurrence in several VOCs is another mechanism of response to elevated global population immunity.

6.
J Clin Virol ; 152: 105170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525108

RESUMO

BACKGROUND: The Omicron variant of concern is characterised by more than 50 distinct mutations, most in the spike protein. The implications of these for disease transmission, tissue tropism and diagnostic testing needs study. OBJECTIVES: We evaluated the performance of RT-PCR on saliva (SA) swabs and antigen testing on mid-turbinate MT samples relative to RT-PCR on MT swabs. Patients (n = 453) presenting for outpatient testing at the Groote Schuur Hospital COVID-19 testing centre in Cape Town South Africa were recruited. Participants were recruited during the Delta (n = 304) and Omicron (n = 149) waves. RESULTS: In 30 confirmed Delta infections, positive percent agreement (PPA) of RT-PCR on saliva was only 73% compared to a composite standard of either MT or SA RT-PCR positivity, with rapid decay by day 3 after symptom onset. In contrast, in the 70 Omicron infections, SA performed as well as, or better than, MT samples up to day 5, with an overall PPA of SA swabs of 96% and MT of 93%. A change in antigen test performance was noted, with PPA of 93% in Delta, but only 68% for Omicron. CONCLUSIONS: Altered shedding kinetics appear to be present in Omicron-infected patients with more viral RNA detectable in saliva. Saliva swabs are a promising alternative to nasal samples, especially early in infection when sampling of both sites could improve detection. Lower sensitivity of antigen tests in Omicron is a concern and requires further study.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade , África do Sul , Tropismo
7.
Int J Infect Dis ; 118: 150-154, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235826

RESUMO

BACKGROUND: At present, it is unclear whether the extent of reduced risk of severe disease seen with SARS-Cov-2 Omicron variant infection is caused by a decrease in variant virulence or by higher levels of population immunity. METHODS: RdRp target delay (RTD) in the Seegene AllplexTM 2019-nCoV PCR assay is a proxy marker for the Delta variant. The absence of this proxy marker in the transition period was used to identify suspected Omicron infections. Cox regression was performed for the outcome of hospital admission in those who tested positive for SARS-CoV-2 on the Seegene AllplexTM assay from November 1 to December 14, 2021 in the Western Cape Province, South Africa, in the public sector. Adjustments were made for vaccination status and prior diagnosis of infection. RESULTS: A total of 150 cases with RTD and 1486 cases without RTD were included. Cases without RTD had a lower hazard of admission (adjusted hazard ratio [aHR], 0.56; 95% confidence interval [CI], 0.34-0.91). Complete vaccination was protective against admission, with an aHR of 0.45 (95% CI, 0.26-0.77). CONCLUSION: Omicron has resulted in a lower risk of hospital admission compared with contemporaneous Delta infection, when using the proxy marker of RTD. Under-ascertainment of reinfections with an immune escape variant remains a challenge to accurately assessing variant virulence.


Assuntos
COVID-19 , Hepatite D , COVID-19/diagnóstico , Humanos , Reação em Cadeia da Polimerase , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética , África do Sul/epidemiologia , Análise de Sobrevida
9.
Nature ; 603(7902): 679-686, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042229

RESUMO

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Botsuana/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , Humanos , Modelos Moleculares , Mutação , Filogenia , Recombinação Genética , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
10.
J Virol Methods ; 302: 114471, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35051442

RESUMO

Routine SARS-CoV-2 surveillance in the Western Cape region of South Africa (January-August 2021) found a reduced RT-PCR amplification efficiency of the RdRp-gene target of the Seegene, Allplex 2019-nCoV diagnostic assay from June 2021 when detecting the Delta variant. We investigated whether the reduced amplification efficiency denoted by an increased RT-PCR cycle threshold value (RΔE) can be used as an indirect measure of SARS-CoV-2 Delta variant prevalence. We found a significant increase in the median RΔE for patient samples tested from June 2021, which coincided with the emergence of the SARS-CoV-2 Delta variant within our sample set. Whole genome sequencing on a subset of patient samples identified a highly conserved G15451A, non-synonymous mutation exclusively within the RdRp gene of Delta variants, which may cause reduced RT-PCR amplification efficiency. While whole genome sequencing plays an important in identifying novel SARS-CoV-2 variants, monitoring RΔE value can serve as a useful surrogate for rapid tracking of Delta variant prevalence.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virologia , Testes Diagnósticos de Rotina , Humanos , RNA , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética
11.
Gates Open Res ; 6: 117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37994361

RESUMO

Background: The SARS-CoV-2 Delta variant (B.1.617.2) has been associated with more severe disease, particularly when compared to the Alpha variant. Most of this data, however, is from high income countries and less is understood about the variant's disease severity in other settings, particularly in an African context, and when compared to the Beta variant. Methods: A novel proxy marker, RNA-dependent RNA polymerase (RdRp) target delay in the Seegene Allplex TM 2019-nCoV (polymerase chain reaction) PCR assay, was used to identify suspected Delta variant infection in routine laboratory data. All cases diagnosed on this assay in the public sector in the Western Cape, South Africa, from 1 April to 31 July 2021, were included in the dataset provided by the Western Cape Provincial Health Data Centre (PHDC). The PHDC collates information on all COVID-19 related laboratory tests, hospital admissions and deaths for the province. Odds ratios for the association between the proxy marker and death were calculated, adjusted for prior diagnosed infection and vaccination status. Results: A total of 11,355 cases with 700 deaths were included in this study. RdRp target delay (suspected Delta variant) was associated with higher mortality (adjusted odds ratio [aOR] 1.45; 95% confidence interval [CI]: 1.13-1.86), compared to presumptive Beta infection. Prior diagnosed infection during the previous COVID-19 wave, which was driven by the Beta variant, was protective (aOR 0.32; 95%CI: 0.11-0.92) as was vaccination (aOR [95%CI] 0.15 [0.03-0.62] for complete vaccination [≥28 days post a single dose of Ad26.COV2.S or ≥14 days post second BNT162b2 dose]). Conclusion: RdRp target delay, a proxy for infection with the Delta variant, is associated with an increased risk of mortality amongst those who were tested for COVID-19 in our setting.

12.
Sci Transl Med ; 14(631): eabj6824, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34931886

RESUMO

SARS-CoV-2 variants that escape neutralization and potentially affect vaccine efficacy have emerged. T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is incompletely understood. We assessed neutralizing antibody and T cell responses in 44 South African COVID-19 patients either infected with the Beta variant (dominant from November 2020 to May 2021) or infected before its emergence (first wave, Wuhan strain) to provide an overall measure of immune evasion. We show that robust spike-specific CD4 and CD8 T cell responses were detectable in Beta-infected patients, similar to first-wave patients. Using peptides spanning the Beta-mutated regions, we identified CD4 T cell responses targeting the wild-type peptides in 12 of 22 first-wave patients, all of whom failed to recognize corresponding Beta-mutated peptides. However, responses to mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3 of 44) mounted CD8 responses that targeted the mutated regions. Among the spike epitopes tested, we identified three epitopes containing the D215, L18, or D80 residues that were specifically recognized by CD4 T cells, and their mutated versions were associated with a loss of response. This study shows that despite loss of recognition of immunogenic CD4 epitopes, CD4 and CD8 T cell responses to Beta are preserved overall. These observations may explain why several vaccines have retained the ability to protect against severe COVID-19 even with substantial loss of neutralizing antibody activity against Beta.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Epitopos , Humanos , Glicoproteína da Espícula de Coronavírus/genética
13.
Science ; 374(6566): 423-431, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672751

RESUMO

The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants.


Assuntos
COVID-19/epidemiologia , Monitoramento Epidemiológico , Genômica , Pandemias , SARS-CoV-2/genética , África/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Variação Genética , Humanos , SARS-CoV-2/isolamento & purificação
14.
Cell Host Microbe ; 29(11): 1611-1619.e5, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34688376

RESUMO

The Johnson and Johnson Ad26.COV2.S single-dose vaccine represents an attractive option for coronavirus disease 2019 (COVID-19) vaccination in countries with limited resources. We examined the effect of prior infection with different SARS-CoV-2 variants on Ad26.COV2.S immunogenicity. We compared participants who were SARS-CoV-2 naive with those either infected with the ancestral D614G virus or infected in the second wave when Beta predominated. Prior infection significantly boosts spike-binding antibodies, antibody-dependent cellular cytotoxicity, and neutralizing antibodies against D614G, Beta, and Delta; however, neutralization cross-reactivity varied by wave. Robust CD4 and CD8 T cell responses are induced after vaccination, regardless of prior infection. T cell recognition of variants is largely preserved, apart from some reduction in CD8 recognition of Delta. Thus, Ad26.COV2.S vaccination after infection could result in enhanced protection against COVID-19. The impact of the infecting variant on neutralization breadth after vaccination has implications for the design of second-generation vaccines based on variants of concern.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinação , Ad26COVS1 , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia
17.
Nature ; 592(7854): 438-443, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690265

RESUMO

Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is creating conditions for substantial evolutionary changes to the virus1,2. Here we describe a newly arisen lineage of SARS-CoV-2 (designated 501Y.V2; also known as B.1.351 or 20H) that is defined by eight mutations in the spike protein, including three substitutions (K417N, E484K and N501Y) at residues in its receptor-binding domain that may have functional importance3-5. This lineage was identified in South Africa after the first wave of the epidemic in a severely affected metropolitan area (Nelson Mandela Bay) that is located on the coast of the Eastern Cape province. This lineage spread rapidly, and became dominant in Eastern Cape, Western Cape and KwaZulu-Natal provinces within weeks. Although the full import of the mutations is yet to be determined, the genomic data-which show rapid expansion and displacement of other lineages in several regions-suggest that this lineage is associated with a selection advantage that most plausibly results from increased transmissibility or immune escape6-8.


Assuntos
COVID-19/virologia , Mutação , Filogenia , Filogeografia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , Análise Mutacional de DNA , Evolução Molecular , Aptidão Genética , Humanos , Evasão da Resposta Imune , Modelos Moleculares , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Seleção Genética , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Fatores de Tempo
18.
bioRxiv ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33688657

RESUMO

Neutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.

19.
Microbiome ; 8(1): 165, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33220709

RESUMO

BACKGROUND: Female genital tract (FGT) inflammation is an important risk factor for HIV acquisition. The FGT microbiome is closely associated with inflammatory profile; however, the relative importance of microbial activities has not been established. Since proteins are key elements representing actual microbial functions, this study utilized metaproteomics to evaluate the relationship between FGT microbial function and inflammation in 113 young and adolescent South African women at high risk of HIV infection. Women were grouped as having low, medium, or high FGT inflammation by K-means clustering according to pro-inflammatory cytokine concentrations. RESULTS: A total of 3186 microbial and human proteins were identified in lateral vaginal wall swabs using liquid chromatography-tandem mass spectrometry, while 94 microbial taxa were included in the taxonomic analysis. Both metaproteomics and 16S rRNA gene sequencing analyses showed increased non-optimal bacteria and decreased lactobacilli in women with FGT inflammatory profiles. However, differences in the predicted relative abundance of most bacteria were observed between 16S rRNA gene sequencing and metaproteomics analyses. Bacterial protein functional annotations (gene ontology) predicted inflammatory cytokine profiles more accurately than bacterial relative abundance determined by 16S rRNA gene sequence analysis, as well as functional predictions based on 16S rRNA gene sequence data (p < 0.0001). The majority of microbial biological processes were underrepresented in women with high inflammation compared to those with low inflammation, including a Lactobacillus-associated signature of reduced cell wall organization and peptidoglycan biosynthesis. This signature remained associated with high FGT inflammation in a subset of 74 women 9 weeks later, was upheld after adjusting for Lactobacillus relative abundance, and was associated with in vitro inflammatory cytokine responses to Lactobacillus isolates from the same women. Reduced cell wall organization and peptidoglycan biosynthesis were also associated with high FGT inflammation in an independent sample of ten women. CONCLUSIONS: Both the presence of specific microbial taxa in the FGT and their properties and activities are critical determinants of FGT inflammation. Our findings support those of previous studies suggesting that peptidoglycan is directly immunosuppressive, and identify a possible avenue for biotherapeutic development to reduce inflammation in the FGT. To facilitate further investigations of microbial activities, we have developed the FGT-DB application that is available at http://fgtdb.org/ . Video Abstract.


Assuntos
Infecções por HIV , Inflamação/microbiologia , Vagina/microbiologia , Vagina/patologia , Adolescente , Feminino , Infecções por HIV/transmissão , Humanos , Inflamação/patologia , Proteômica , RNA Ribossômico 16S/genética , Fatores de Risco , África do Sul/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA