Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Turk J Biol ; 48(4): 257-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296334

RESUMO

Background/aim: Aging, a multifaceted biological process, leads to diminished physical performance, especially in older adults with diabetes, where a mismatch between biological and chronological age is noticeable. Numerous studies have demonstrated that diabetes accelerates aging at the cellular and organ levels. Notable aging markers are telomerase reverse transcriptase (TERT), related to telomere length, and type 1 chain collagen (COL1A1), a key component of skin collagen. Additionally, age-related methylation increases, as revealed through methylation analysis, augmenting aspects of aging. However, the detailed interplay between aging and diabetes, particularly regarding methylation, remains underexplored and warrants further study to elucidate the biological links between the two. Materials and methods: In this study, we elucidate the modulatory influence of diabetes on the aging process, focusing specifically on the modifications in TERT in the kidney and COL1A1 in the skin using mice of Swiss Webster strain as the diabetes model. Specimens were categorized into three distinct chronological cohorts: chronologically young (16 weeks; n = 5), chronologically old (40 weeks; n = 5), and a periodically assessed group (16 weeks; n = 30), from which five mice were systematically sacrificed on a weekly basis. Results: Our findings reveal a marked impact of diabetes on the methylation statuses of TERT and COL1A1, characterized by an elevation in methylation levels within the periodic group (1st-6th week) and a simultaneous, progressive attenuation in the expression of TERT and COL1A1 genes. Conclusion: The observed alterations in the methylation levels of TERT and COL1A1 propound the hypothesis that diabetes potentially expedites the aging process, concomitantly impinging on the production of TERT and COL1A, ostensibly through the mechanism of promoter gene hypermethylation.

2.
Heliyon ; 6(10): e04981, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33083584

RESUMO

In photosynthesis, certain wavelengths of radiation are absorbed by photosynthetic pigments in plants, depending on the molecular structures of the pigments. Two main radiation wavelengths absorbed by plants for photosynthesis and biomass production are in the range of red and blue lights. Therefore, in addition to white light, observation applying the red and blue lights in plant researches gain great interest. The aim of this project is to compare the effect of three LED lights on the biomass production and copper remediation by previously-screened shoot cultures of Musa paradisiaca. The LED lights applied are arrangements of white, red, and blue LEDs, each arrangement having the same voltage of 12 V and the same power of 24 Watts. The shoot cultures were cultivated aseptically in 25 mL Murashige and Skoog agar media supplemented with 5 mg/L copper ions. Both parameters -the biomass production and copper concentration in biomass- determine the overall copper remediation by the shoot cultures from media. The results of this project show about 1.5-fold biomass production -expressed as growth index- was obtained upon the application of white light compared to that of the other two lights. Meanwhile, there is no significant difference in the concentration of copper in biomass upon the application of the three lights. Combined together, the application of white light still predominates for the overall copper remediation by the shoot cultures of Musa paradisiaca from media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA