Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30440, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742087

RESUMO

Sechium edule, commonly known as chayote is known for its low glycemic index, high fiber content, and rich nutritional profile, which suggests it may be beneficial for individuals with diabetes. While research specifically examining the impact of chayote on diabetes is limited, this study screened its biological impacts by using different biomarkers on streptozotocin-induced diabetic (STZ-ID) rats. The ethanolic extract of the Sechium edule fruits was assessed for different phytochemical, biochemical, and anti-diabetic properties. In the results, chayote extract had high phenolic and flavonoid contents respectively (39.25 ± 0.65 mg/mL and 12.16 ± 0.50 mg/mL). These high phenolic and flavonoid contents showed high implications on STZ-ID rats. Altogether 200 and 400 mg/kg of the extract considerably reduced the blood sugar level and enhanced the lipid profile of the STZ-ID rats. Additionally, they have decreased blood urea and serum creatinine levels. Besides, the levels of SGOT, SGPT, LDH, sodium, and potassium ions were significantly lowered after the administration period. More importantly, the electrocardiogram (ECG) parameters such as QT, RR, and QTc which were prolonged in the diabetic rats were downregulated after 35 days of administration of S. edule extract (400 mg/kg). And, the histological examination of the pancreas and kidney showed marked improvement in structural features of 200 and 400 mg/kg groups when compared to the diabetic control group. Where the increase in the glucose levels was positively correlated with QT, RR, and QTc (r2 = 0.76, r2 = 0.76, and r2 = 0.43) which means that ECG could significantly reflect the diabetes glucose levels. In conclusion, our findings showed that the fruit extract exerts a high potential to reduce artifacts secondary to diabetes which can be strongly suggested for diabetic candidates. However, there is a need to study the molecular mechanisms of the extract in combating artifacts secondary to diabetes in experimental animals.

2.
PeerJ ; 12: e16928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436002

RESUMO

Momordica cymbalaria Hook F. (MC), belonging to the family Cucurbitaceae, is a plant with several biological activities. This detailed, comprehensive review gathers and presents all the information related to the geographical distribution, morphology, therapeutic uses, nutritional values, pharmacognostic characters, phytochemicals, and pharmacological activities of MC. The available literature showed that MC fruits are utilized as a stimulant, tonic, laxative, stomachic, and to combat inflammatory disorders. The fruits are used to treat spleen and liver diseases and are applied in folk medicine to induce abortion and treat diabetes mellitus. The phytochemical screening studies report that MC fruits contain tannins, alkaloids, phenols, proteins, amino acids, vitamin C, carbohydrates, ß-carotenes, palmitic acid, oleic acid, stearic acid, α-eleostearic acid, and γ-linolenic acid. The fruits also contain calcium, sodium, iron, potassium, copper, manganese, zinc, and phosphorus. Notably, momordicosides are cucurbitacin triterpenoids reported in the fruits of MC. Diverse pharmacological activities of MC, such as analgesic, anti-inflammatory, antioxidant, hepatoprotective, nephroprotective, antidiabetic, cardioprotective, antidepressant, anticonvulsant, anticancer, antiangiogenic, antifertility, antiulcer, antimicrobial, antidiarrheal and anthelmintic, have been reported by many investigators. M. cymbalaria methanolic extract is safe up to 2,000 mg/kg. Furthermore, no symptoms of toxicity were found. These pharmacological activities are mechanistically interpreted and described in this review. Additionally, the microscopic, powder and physiochemical characteristics of MC tubers are also highlighted. In summary, possesses remarkable medicinal values, which warrant further detailed studies to exploit its potential benefits therapeutically.


Assuntos
Cucurbitaceae , Momordica , Feminino , Gravidez , Humanos , Compostos Fitoquímicos/farmacologia , Cafeína , Vitaminas
3.
Artigo em Inglês | MEDLINE | ID: mdl-37930391

RESUMO

The unique properties of biosurfactants obtained from microbes, including their activity at extreme temperatures, make them more attractive than synthetic alternatives. Henceforth, the principle objective is to isolate and detect the antibacterial and antifungal activities of the biosurfactants produced from bacteria of the economically competitive mangrove ecosystem. Using the serial dilution method, 53 bacterial strains were recovered from the Manakudy mangrove forest in Kanyakumari, India, for the investigation. Different biosurfactant screening methods and morphological and biochemical tests were opted to select the potential biosurfactant producer. After the initial screening, two strains were discovered by 16S rRNA gene sequencing followed by extraction using chloroform: methanol (2:1) by the precipitation method. The partially purified biosurfactants were then screened for antimicrobial properties against pathogens including Mucor sp., Trichoderma sp. Morphological, biochemical, and 16S rRNA gene sequencing identified the two strains to be gram-positive, rod-shaped bacteria namely Virgibacillus halodentrificans CMST-ZI (GenBank Accession No.: OL336402.1) and Pseudomonas pseudoalcaligenes CMST-ZI (GenBank Accession No (10 K): OL308085.1). The two extracted biosurfactants viz., 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, as well as cycloheptane efficiently inhibited human pathogens, including Enterococcus faecalis, and fungi, including Mucor sp., Trichoderma sp., indicated by the formation of a zone of inhibition in pharmacological screening. Thus, there is a growing interest in the prospective application of these biosurfactants isolated from marine microbes, exhibiting antimicrobial properties which can be further studied as a potential candidate in biomedical studies and eco-friendly novel drug development.

4.
Brain Sci ; 12(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291322

RESUMO

BACKGROUND: Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE: This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY: Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA