Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25056, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333830

RESUMO

The use of Supplementary Cementitious Materials (SCMs) or industrial wastes as a partial replacement for cement in the production of concrete is an urgent need in the construction industry due to cement's growing environmental challenges and rising cost. In respect of this, we conducted research work on proportioning binary concrete mixes. Fly ash (FA) replaced 10 %, 20 %, and 30 % of the cement, while silica fume (SF) replaced 5 %, 10 %, and 15 % of the cement. A control concrete mix was also developed with 100 % cement and no SCM. The results showed no increase in compressive strength for FA concrete compared to control at the early age of 3-28 days, but a maximum increase in compressive strength of 4 % was discovered at a later age of 56 days for concrete with 20 % FA. For 5 % SF concrete, a considerable strength increase of 15 % was seen at the early age of 3 days. Like with FA concrete, 2 % improvement in strength was recorded at the later age of 56 days for 10 % SF concrete. This study further focused on the concrete's temporal evolution of compressive strength by developing a strength evolution model (SEM) using nonlinear regression analysis at a 95 % confidence level. Pearson correlation coefficient was used to determine the correlation between the model values and the experimental results. For comparison, the fib Model Code 2010 was applied to the experimental data, and a good agreement was observed among the proposed model, the fib Model values, and the experimental results. The proposed model can be expanded to address further regression-related problems. Finally, environmental life cycle assessment revealed that utilizing 10 %, 20 %, and 30 % of FA lowered Global Warming Potential (GWP) by 9 %, 19 %, and 29 %, respectively. Likewise, using 5 %, 10 %, and 15 % of SF reduced the GWP by 5 %, 9 %, and 14 %.

2.
Heliyon ; 10(4): e26331, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390164

RESUMO

Owing to the increasing threat to environment due to the emission of greenhouse gases from cement industry globally, various promising solutions has been introduced in the past decades. The development of geoplymer concrete (GPC) is one of the contribution by the researches towards ecofriendly and sustainable construction. In this research, geopolymer concrete (GPC) is optimized by adding fixed amount of fly Ash (FA) and alkali activator to fine aggregate ratio as 0.5 with varying Molarity from 12 M to 16 M and Na2SiO3/NaOH ratio from 1.5 to 2.5. Physical and mechanical properties along with effect of heat and ambient curing conditions were investigated at various ages. The optimized mixture of fly ash based geopolymer concrete was then up scaled by blending with locally available Metakaolin (MK) with different dosages (i.e., 10%, 20%, 30%, 40%). The aim of the study is to identify the binary effect of FA and MK on overall performance of geopolymer concrete. Results showed that 30% FA-MK based GPC depicted 21%, 19% and 26% more compressive strength, split tensile strength and flexural strength respectively than Fly Ash based GPC alone at heat cured condition. This can be explained mainly due to two facts namely binary action of metakaolin that enhances compaction of GPC and pozzolanic activity of MK that expedite geopolymeric strength causing phases. The results were further verified by Modified Chapelle test and FTIR. Morphology of the developed GPC is also examined from SEM images. The work is an effort to utilize the fly ash produced by coal power plants to effectively address UN sustainable development goal related to sustainable cities and communities.

3.
Materials (Basel) ; 17(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399214

RESUMO

Enhancing the strength of fly ash (FA)-based geopolymer by increasing the alkaline activator content is a costly and unsustainable technique. Therefore, this work was designed to reduce the activator by employing the pressured catalysis (PC) technique, coupled with the use of minerals that have filler and occupying effects. The main objective was to enhance the strength of the mix with a lower alkaline-to-precursor (A/P) ratio and create a sustainable, load-bearing building block from it. Initially, the compressive strength of the FA-based geopolymer was investigated experimentally by varying sodium silicate to sodium hydroxide and A/P ratios with ambient and hot curing. Afterward, PC was applied to the optimized proportion of constituents, and a significant increase in strength (9.6 to 20.0 Mpa) was observed at a 0.25 A/P ratio. By adding clay and dune sand (DS), the compressive strength was 19.5 and 40.4 Mpa at an A/P of 0.25 and 0.16, respectively. The strength gain mechanism was evaluated at the molecular and micro levels by conducting FTIR and SEM analyses. The environmental and economic indices and strength indicated the high sustainability of DS-based geopolymers compared to analogous blocks. The environmental and economic benefits of 23.9% reduced CO2 emissions and 24.2% less cost were provided by the DS-based block compared to the FA-clay-based block. A DS-based geopolymer obtains strength at a low A/P due to its occupying effect and results in sustainable building blocks.

4.
Materials (Basel) ; 15(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36013795

RESUMO

The disposal of steel slag leads to the occupation of large land areas, along with many environmental consequences, due to the release of poisonous substances into the water and soil. The use of steel slag in concrete as a sand-replacement material can assist in reducing its impacts on the environment and can be an alternative source of fine aggregates. This is the very first paper that seeks to experimentally investigate the cumulative effect of steel slag and polypropylene fibers, particularly on the impact resistance of concrete. Various concrete mixes were devised by substituting natural sand with steel slag at volumetric replacement ratios of 0%, 10%, 20%, 30%, and 40%, with and without fibers. Polypropylene fibers of 12 mm length were introduced into the steel slag concrete at 0%, 0.5%, and 1.0% by weight of cement as a reinforcing material. Performance evaluation of each mix through extensive experimental testing indicated that the use of steel slag as partial substitution of natural sand, up to a certain optimum replacement level of 30%, considerably improved the compressive strength, flexural strength, and tensile strength of the concrete by 20.4%, 23.8%, and 17.0%, respectively. Furthermore, the addition of polypropylene fibers to the steel slag concrete played a beneficial role in the improvement of strength characteristics, particularly the flexural strength and final drop weight impact energy, which had a maximum rise of 48.1% and 164%, correspondingly. Moreover, integral structure and analytical analyses have also been performed in this study to validate the experimental findings. The results obtained encourage the use of fiber-reinforced steel slag concrete (FRSLC) as a potential impact-resistant material considering the environmental advantages, with the suggested substitution, of an addition ratio of 30% and 1.0% for steel slag and polypropylene fibers, respectively.

5.
Environ Sci Pollut Res Int ; 29(43): 65655-65669, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488994

RESUMO

In this research, the mechanical properties and durability of sulfur concrete with two different waste aggregates were evaluated. The waste aggregates included ground granulated blast-furnace slag and waste marble powder. The properties of sulfur concrete were also compared with those of the conventional binder concretes (i.e., Portland cement concrete and sulfate-resistant cement concrete). The durability parameters included measuring water absorption capacity and resistance to different harsh chemical environments (5% HCl solution, 5 Molar NaOH solution, and 16% NaCl solution). It was found that sulfur concrete made with slag as aggregate exhibited the maximum strength, i.e., about 2 times higher than that of Portland cement concrete and sulfate-resistant cement concrete. Sulfur concrete made with slag and marble waste powder showed superior mechanical performance compared to that made with river sand. Thus, sulfur binder develops more favorable properties with eco-friendly fillers than it develops with natural sand. In harsh chloride and acidic environment, sulfur concrete with slag powder exhibited about 90-95% lesser mass loss than Portland cement concrete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA