Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J Digit Health ; 5(2): 123-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505483

RESUMO

Aims: A majority of acute coronary syndromes (ACS) present without typical ST elevation. One-third of non-ST-elevation myocardial infarction (NSTEMI) patients have an acutely occluded culprit coronary artery [occlusion myocardial infarction (OMI)], leading to poor outcomes due to delayed identification and invasive management. In this study, we sought to develop a versatile artificial intelligence (AI) model detecting acute OMI on single-standard 12-lead electrocardiograms (ECGs) and compare its performance with existing state-of-the-art diagnostic criteria. Methods and results: An AI model was developed using 18 616 ECGs from 10 543 patients with suspected ACS from an international database with clinically validated outcomes. The model was evaluated in an international cohort and compared with STEMI criteria and ECG experts in detecting OMI. The primary outcome of OMI was an acutely occluded or flow-limiting culprit artery requiring emergent revascularization. In the overall test set of 3254 ECGs from 2222 patients (age 62 ± 14 years, 67% males, 21.6% OMI), the AI model achieved an area under the curve of 0.938 [95% confidence interval (CI): 0.924-0.951] in identifying the primary OMI outcome, with superior performance [accuracy 90.9% (95% CI: 89.7-92.0), sensitivity 80.6% (95% CI: 76.8-84.0), and specificity 93.7 (95% CI: 92.6-94.8)] compared with STEMI criteria [accuracy 83.6% (95% CI: 82.1-85.1), sensitivity 32.5% (95% CI: 28.4-36.6), and specificity 97.7% (95% CI: 97.0-98.3)] and with similar performance compared with ECG experts [accuracy 90.8% (95% CI: 89.5-91.9), sensitivity 73.0% (95% CI: 68.7-77.0), and specificity 95.7% (95% CI: 94.7-96.6)]. Conclusion: The present novel ECG AI model demonstrates superior accuracy to detect acute OMI when compared with STEMI criteria. This suggests its potential to improve ACS triage, ensuring appropriate and timely referral for immediate revascularization.

2.
J Electrocardiol ; 82: 147-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38154405

RESUMO

BACKGROUND: The electrocardiogram (ECG) is one of the most accessible and comprehensive diagnostic tools used to assess cardiac patients at the first point of contact. Despite advances in computerized interpretation of the electrocardiogram (CIE), its accuracy remains inferior to physicians. This study evaluated the diagnostic performance of an artificial intelligence (AI)-powered ECG system and compared its performance to current state-of-the-art CIE. METHODS: An AI-powered system consisting of 6 deep neural networks (DNN) was trained on standard 12­lead ECGs to detect 20 essential diagnostic patterns (grouped into 6 categories: rhythm, acute coronary syndrome (ACS), conduction abnormalities, ectopy, chamber enlargement and axis). An independent test set of ECGs with diagnostic consensus of two expert cardiologists was used as a reference standard. AI system performance was compared to current state-of-the-art CIE. The key metrics used to compare performances were sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 score. RESULTS: A total of 932,711 standard 12­lead ECGs from 173,949 patients were used for AI system development. The independent test set pooled 11,932 annotated ECG labels. In all 6 diagnostic categories, the DNNs achieved high F1 scores: Rhythm 0.957, ACS 0.925, Conduction abnormalities 0.893, Ectopy 0.966, Chamber enlargement 0.972, and Axis 0.897. The diagnostic performance of DNNs surpassed state-of-the-art CIE for the 13 out of 20 essential diagnostic patterns and was non-inferior for the remaining individual diagnoses. CONCLUSIONS: Our results demonstrate the AI-powered ECG model's ability to accurately identify electrocardiographic abnormalities from the 12­lead ECG, highlighting its potential as a clinical tool for healthcare professionals.


Assuntos
Síndrome Coronariana Aguda , Inteligência Artificial , Humanos , Eletrocardiografia , Redes Neurais de Computação , Benchmarking
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA