Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(6): 4887-4897, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37072653

RESUMO

BACKGROUND: In Brachiaria sexual reproduction, during ovule development, a nucellar cell differentiates into a megaspore mother cell (MMC) that, through meiosis and mitosis, gives rise to a reduced embryo sac. In aposporic apomictic Brachiaria, next to the MMC, other nucellar cells differentiate into aposporic initials that enter mitosis directly forming an unreduced embryo sac. The IPT (isopentenyltransferase) family comprises key genes in the cytokinin (CK) pathway which are expressed in Arabidopsis during ovule development. BbrizIPT9, a B. brizantha (syn. Urochloa brizantha) IPT9 gene, highly similar to genes of other Poaceae plants, also shows similarity with Arabidopsis IPT9, AtIPT9. In this work, we aimed to investigate association of BbrizIPT9 with ovule development in sexual and apomictic plants. METHODS AND RESULTS: RT-qPCR showed higher BbrizIPT9 expression in the ovaries of sexual than in the apomictic B. brizantha. Results of in-situ hybridization showed strong signal of BbrizIPT9 in the MMC of both plants, at the onset of megasporogenesis. By analyzing AtIPT9 knockdown mutants, we verified enlarged nucellar cell, next to the MMC, in a percentage significantly higher than in the wild type, suggesting that knockout of AtIPT9 gene triggered the differentiation of extra MMC-like cells. CONCLUSIONS: Our results indicate that AtIPT9 might be involved in the proper differentiation of a single MMC during ovule development. The expression of a BbrizIPT9, localized in male and female sporocytes, and lower in apomicts than in sexuals, and effect of IPT9 knockout in Arabidopsis, suggest involvement of IPT9 in early ovule development.


Assuntos
Arabidopsis , Brachiaria , Brachiaria/genética , Arabidopsis/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Poaceae , Reprodução/genética , Regulação da Expressão Gênica de Plantas/genética
2.
Planta ; 252(3): 39, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32797317

RESUMO

MAIN CONCLUSION: In Brachiaria brizantha BbrizSERK1, BbrizSERK2 and BbrizSERK3 were identified. SERK expression marks somatic embryogenesis, sexual MMC, and sexual and apomictic PMC. BbrizSERK3 might have a regulatory role in reproductive development. Somatic embryogenesis receptor-like kinase (SERK) consists of plasma membrane receptor genes that have been characterized in various species, associated with several aspects of plant development, including reproduction. SERK genes are involved in anther development and in early embryo development in sexual and asexual seed formation. To comprehend the complexity of the SERK genes and their function in Brachiaria reproduction, we performed a homology-based search in a genomic database of a sexual B. brizantha and identified sequences of three SERK genes, BbrizSERK1, BbrizSERK2, and BbrizSERK3. RNASeq data showed equivalent abundance of BbrizSERK1 and BbrizSERK2 transcripts in ovaries at early megasporogenesis of sexuals and apomicts, while BbrizSERK3 transcripts were more abundant in ovaries of sexuals than in apomicts. BbrizSERK3 results in three coding sequences due to alternative splicing, among them Variant 1 results in a protein with all the predicted domains of a SERK. BbrizSERK transcripts were detected in male reproductive tissues of both sexual and apomictic plants, suggesting a role in controlling anther development. BbrizSERK transcripts were detected early in ovule development, in the integuments, and in the megaspore mother cell of the sexual plant, but not in the cells that give rise to apomictic embryo sacs, suggesting a role in female reproductive development of sexuals. This paper provides evidences that SERK genes plays a role in the onset and establishment of somatic embryogenesis and in the reproductive development of B. brizantha and suggests a distinct role of BbrizSERK in apomixis initiation.


Assuntos
Brachiaria/crescimento & desenvolvimento , Brachiaria/genética , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Reprodução/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Técnicas de Embriogênese Somática de Plantas
3.
Plant Cell Rep ; 37(2): 293-306, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080908

RESUMO

KEY MESSAGE: BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.


Assuntos
Brachiaria/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Apomixia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brachiaria/crescimento & desenvolvimento , Brachiaria/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Homologia de Sequência de Aminoácidos
4.
Cell Rep ; 9(1): 378-390, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284785

RESUMO

Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two subtypes of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Zea mays/metabolismo , Domínio Catalítico , Filogenia , Plantas Geneticamente Modificadas/metabolismo , Transcrição Gênica
5.
J Agric Food Chem ; 59(17): 9542-52, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21718052

RESUMO

Among tree nut allergens, pecan allergens remain to be identified and characterized. The objective was to demonstrate the IgE-binding ability of pecan 11S legumin and characterize its sequential IgE-binding epitopes. The 11S legumin gene was amplified from a pecan cDNA library and expressed as a fusion protein in Escherichia coli. The native 11S legumin in pecan extract was identified by mass spectrometry/mass spectrometry (MS/MS). Sequential epitopes were determined by probing the overlapping peptides with three serum pools prepared from different patients' sera. A three-dimensional model was generated using almond legumin as a template and compared with known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot blot, 16 (57%) bound to 11S legumin, designated Car i 4. MS/MS sequencing of native 11S legumin identified 33 kDa acidic and 20-22 kDa basic subunits. Both pecan and walnut seed protein extracts inhibited IgE binding to recombinant Car i 4, suggesting cross-reactivity with Jug r 4. Sequential epitope mapping results of Car i 4 revealed weak, moderate, and strong reactivity of serum pools against 10, 5, and 4 peptides, respectively. Seven peptides were recognized by all three serum pools, of which two were strongly reactive. The strongly reactive peptides were located in three discrete regions of the Car i 4 acidic subunit sequence (residues 118-132, 208-219, and 238-249). Homology modeling of Car i 4 revealed significant overlapping regions shared in common with other tree nut legumins.


Assuntos
Alérgenos/genética , Carya , Clonagem Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Sementes/química , Alérgenos/química , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação de Anticorpos , Carya/genética , Carya/imunologia , DNA Complementar/química , Epitopos/química , Epitopos/imunologia , Humanos , Imunoglobulina E/imunologia , Dados de Sequência Molecular , Hipersensibilidade a Noz/imunologia , Proteínas de Plantas/química , Coelhos , Proteínas Recombinantes/imunologia , Sementes/genética , Sementes/imunologia , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Leguminas
6.
J Agric Food Chem ; 59(8): 4130-9, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21395309

RESUMO

Although pecans are associated with IgE-mediated food allergies, the allergens responsible remain to be identified and characterized. The 2S albumin gene was amplified from the pecan cDNA library. Dot-blots were used to screen the recombinant protein with pecan allergic patients' serum. The affinity purified native protein was analyzed by Edman sequencing and mass spectrometry/mass spectrometry (MS/MS) analysis. Cross-reactivity with walnut was determined by inhibition enzyme-linked immunosorbent assay (ELISA). Sequential epitopes were determined by probing the overlapping peptides with three different patients' serum pool. The 3-dimensional homology model was generated, and the locations of the pecan epitopes were compared with those of known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot-blot, 22 (79%) bound to 2S albumin, designated as Car i 1. Edman sequencing and the MS/MS sequencing of native 2S albumin confirmed the identity of recombinant (r) Car i 1. Both pecan and walnut protein extracts inhibited the IgE-binding to rCar i 1. Sequential epitope mapping indicated weak, moderate, and strong reactivity against 12, 7, and 5 peptides, respectively. Of the 11 peptides recognized by all serum pools, 5 peptides were strongly reactive and located in 3 discrete regions of the Car i 1 (amino acids 43-57, 67-78, and 106-120). Three-dimensional modeling revealed IgE-reactive epitopes to be solvent accessible and share significant homology with other tree nuts providing a possible basis for previously observed cross-reactivity.


Assuntos
Albuminas/genética , Alérgenos/genética , Carya/imunologia , Sequência de Bases , Carya/genética , Cromatografia de Afinidade , Clonagem Molecular , Reações Cruzadas , Primers do DNA , DNA de Plantas , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Dados de Sequência Molecular , Espectrometria de Massas em Tandem
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 11): 1097-104, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19923726

RESUMO

The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel proangiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Feminino , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Coelhos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
8.
Hepatology ; 50(1): 25-33, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19489073

RESUMO

UNLABELLED: Hepatitis C virus (HCV) infection leads to acute and chronic liver diseases, and new classes of anti-HCV therapeutics are needed. Cyclosporine A (CsA) inhibits HCV replication and CsA derivatives that lack the immunosuppressive function are currently in clinical trials as candidate anti-HCV drugs. Here we characterize several independently derived HCV replicons with varying levels of CsA resistance due to mutations in nonstructural protein 5B (NS5B), the HCV-encoded polymerase. Mutant HCV replicons engineered with these mutations showed resistance to CsA. The mutations reside in two distinct patches in the polymerase: the template channel and one face of a concave surface behind the template channel. Mutant NS5B made by cells expressing the HCV replicon had increased ability to bind to RNA in the presence of CsA. Purified recombinant NS5B proteins containing the mutations were better at de novo initiated RNA synthesis than the wild-type control. Furthermore, the mutant proteins were able to bind RNA with approximately 8-fold higher affinity. Last, mutation near the template channel alleviated the lethal phenotype of a mutation in the concave patch, P540A. This intramolecular compensation for the HCV replicase function by amino acid changes in different domains was further confirmed in an infectious cell culture-derived virus system. CONCLUSION: An increased level of CsA resistance is associated with distinct mutations in the NS5B gene that increase RNA binding in the presence of CsA, and the intramolecular communications between residues of the thumb and the C-terminal domains are important for HCV replicase function.


Assuntos
Ciclosporina/farmacologia , Farmacorresistência Viral , Hepacivirus/enzimologia , Hepacivirus/genética , Mutação , RNA Polimerase Dependente de RNA , RNA/metabolismo , Proteínas não Estruturais Virais/genética , Hepacivirus/efeitos dos fármacos
9.
J Cell Physiol ; 219(2): 421-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19170078

RESUMO

Human mesenchymal stem cells (hMSCs) developed in three-dimensional (3D) scaffolds are significantly affected by culture conditions. We hypothesized that the hydrodynamic forces generated in perfusion bioreactors significantly affected hMSC functionality in 3D scaffolds by shaping the extracellular matrix (ECM) proteins. In this study, hMSCs were grown in 3D poly(ethylene terephthalate) (PET) scaffolds in static and a parallel perfusion system under similar initial conditions for up to 35 days. Results demonstrated that even at very low media velocities (O [10(-4) cm/sec]), perfusion cultures affected the ability of hMSCs to form an organized ECM network as illustrated by the immunostaining of collagen I and laminin fibrous structure. The change in the ECM microenvironment consequently influenced the nuclear shape. The hMSCs grown at the lower surface of static culture displayed a 15.2 times higher nuclear elongation than those at the upper surface, whereas cells grown in the perfusion bioreactor displayed uniform spherical nuclei on both surfaces. The difference in ECM organization and nuclear morphology associated with gene expression and differentiation characteristics of hMSCs. The cells exhibited lower CFU-F colony forming ability and decreased expressions of stem-cell genes of Rex-1 and Oct-4, implying a less primitive stem-cell phenotype was maintained in the perfusion culture relative to the static culture conditions. The significantly higher expression level of osteonectin gene in the perfusion culture at day 28 indicated an upregulation of osteogenic ability of hMSCs. The study highlights the critical role of dynamic culture conditions on 3D hMSC construct development and properties.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Reatores Biológicos , Diferenciação Celular/fisiologia , Núcleo Celular/ultraestrutura , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Perfusão
10.
J Biol Chem ; 283(29): 20209-19, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18490446

RESUMO

NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene glycol treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activation of the UPR by ER stress inducers, but did not affect activation of NRPs. We also found that this integrated pathway transduces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senescence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmentation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde production, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytokinin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.


Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/citologia , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Asparagina/metabolismo , Morte Celular , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Genes Reporter/genética , Osmose , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Dobramento de Proteína , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Regulação para Cima
11.
J Virol ; 82(11): 5269-78, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18385230

RESUMO

Cyclosporine (CsA) and its derivatives potently suppress hepatitis C virus (HCV) replication. Recently, CsA-resistant HCV replicons have been identified in vitro. We examined the dependence of the wild-type and CsA-resistant replicons on various cyclophilins for replication. A strong correlation between CsA resistance and reduced dependency on cyclophilin A (CyPA) for replication was identified. Silencing of CyPB or CyPC expression had no significant effect on replication, whereas various forms of small interfering RNA (siRNA) directed at CyPA inhibited HCV replication of wild-type but not CsA-resistant replicons. The efficiency of a particular siRNA in suppressing CyPA expression was correlated with its potency in inhibiting HCV replication, and expression of an siRNA-resistant CyPA cDNA rescued replication. In addition, an anti-CyPA antibody blocked replication of the wild-type but not the resistant replicon in an in vitro replication assay. Depletion of CyPA alone in the CsA-resistant replicon cells eliminated CsA resistance, indicating that CyPA is the chief mediator of the observed CsA resistance. The dependency on CyPA for replication was observed for both genotype (GT) 1a and 1b replicons as well as a GT 2a infectious virus. An interaction between CyPA and HCV RNA as well as the viral polymerase that is sensitive to CsA treatment in wild-type but not in resistant replicons was detected. These findings reveal the molecular mechanism of CsA resistance and identify CyPA as a critical cellular cofactor for HCV replication and infection.


Assuntos
Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Sequência de Bases , Linhagem Celular , Ciclofilina A/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Viral da Expressão Gênica , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/genética , Replicon/genética
12.
BMC Genomics ; 8: 431, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-18036212

RESUMO

BACKGROUND: Despite the potential of the endoplasmic reticulum (ER) stress response to accommodate adaptive pathways, its integration with other environmental-induced responses is poorly understood in plants. We have previously demonstrated that the ER-stress sensor binding protein (BiP) from soybean exhibits an unusual response to drought. The members of the soybean BiP gene family are differentially regulated by osmotic stress and soybean BiP confers tolerance to drought. While these results may reflect crosstalk between the osmotic and ER-stress signaling pathways, the lack of mutants, transcriptional response profiles to stresses and genome sequence information of this relevant crop has limited our attempts to identify integrated networks between osmotic and ER stress-induced adaptive responses. As a fundamental step towards this goal, we performed global expression profiling on soybean leaves exposed to polyethylene glycol treatment (osmotic stress) or to ER stress inducers. RESULTS: The up-regulated stress-specific changes unmasked the major branches of the ER-stress response, which include enhancing protein folding and degradation in the ER, as well as specific osmotically regulated changes linked to cellular responses induced by dehydration. However, a small proportion (5.5%) of total up-regulated genes represented a shared response that seemed to integrate the two signaling pathways. These co-regulated genes were considered downstream targets based on similar induction kinetics and a synergistic response to the combination of osmotic- and ER-stress-inducing treatments. Genes in this integrated pathway with the strongest synergistic induction encoded proteins with diverse roles, such as plant-specific development and cell death (DCD) domain-containing proteins, an ubiquitin-associated (UBA) protein homolog and NAC domain-containing proteins. This integrated pathway diverged further from characterized specific branches of ER-stress as downstream targets were inversely regulated by osmotic stress. CONCLUSION: The present ER-stress- and osmotic-stress-induced transcriptional studies demonstrate a clear predominance of stimulus-specific positive changes over shared responses on soybean leaves. This scenario indicates that polyethylene glycol (PEG)-induced cellular dehydration and ER stress elicited very different up-regulated responses within a 10-h stress treatment regime. In addition to identifying ER-stress and osmotic-stress-specific responses in soybean (Glycine max), our global expression-profiling analyses provided a list of candidate regulatory components, which may integrate the osmotic-stress and ER-stress signaling pathways in plants.


Assuntos
Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica/métodos , Glycine max/genética , Folhas de Planta/genética , Transdução de Sinais/genética , DNA Complementar/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA