Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 185: 116259, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798889

RESUMO

Passive sampling and bioaccumulation assessments were used to evaluate the performance of activated carbon (AC) remediation of polychlorinated biphenyl (PCB) contaminated sediment offshore in Parcel F of the former Hunters Point Naval Shipyard (HPNS) (San Francisco, California). Two different composite AC materials, AquaGate+PAC™ (86 tons) and SediMite™ (24 tons) were placed on the sediment surface covering an area of 3200 m2. PCB tissue concentrations in the clam Macoma nasuta were reduced 75 to 80% in pilot amendment areas after 8 months and 84-87% in non-lipid normalized tissues after 14 months during in situ monitoring, confirming the effectiveness of the AC at reducing bioavailability of the PCBs. Polydimethylsiloxane (PDMS) passive samplers were applied to evaluate and monitor freely dissolved concentrations (Cfree) of PCBs in sediment porewater before AC placement (i.e., during baseline) and at 8 months, 14 months and 26 months following placement. Although AC composite materials were placed only at the surface, 80% reductions were observed to a depth of 16 cm after 8 months and up to 26 cm after 26 months in AquaGate+PAC treatment area. Total PCB porewater concentrations in surface sediments (1-6 cm) were reduced 89 and 91% in the AquaGate+PAC and SediMite areas during final sampling. Ex situ passive sampling showed porewater concentrations 2-5 times larger than in situ measurements due to the absence of hyporheic exchange in laboratory measurements and near equilibration between sediment and porewater. Estimated post placement ex situ porewater concentrations were more consistent with a model of bioaccumulation using the octanol-water partition coefficient (KOW) as a bioaccumulation factor leading to a hypothesis that the bioaccumulation factor in the deposit feeding clam is better estimated by equilibrium ex situ porewater measurements.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Carvão Vegetal , Monitoramento Ambiental , Sedimentos Geológicos , Bifenilos Policlorados/análise , São Francisco , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 134(1): 133-44, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15572231

RESUMO

An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses.


Assuntos
Exposição Ambiental , Monitoramento Ambiental/métodos , Invertebrados/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Sedimentos Geológicos , Pesquisa , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA